Comunicaciones técnicas
Volúmen XII
EDITA:
Escuela Nacional de Entrenadores
ARTICULOS SELECCIONADOS POR:
José Luis Sánchez Hernández
Federación Española de Piragüismo
C/ Cea Bermúdez, 14-1º
28003 - MADRID
INDICE

Aspectos metodológicos del entrenamiento en canoa y kayak, por Cornelio Versanescu 7

La técnica del paleo en canoa, de la escuela rumana, por Mercurian Octavian 21

Método de entrenamiento en la piragua de pista, por Dr. Bernd A. Kasprzk 31

Estructura de la prestación en los deportes de resistencia, por George Neumamm 41

Promoción deportiva a nivel de club, por Ramiro Piñeiro Oliveira .. 57

Valoración de la técnica (Programa 2.000) Vitoria 1992, por Eduardo de Bergia Cervantes y José Luis Sánchez Hernández ... 77
ASPECTOS METODOLOGICOS DEL ENTRENAMIENTO EN CANOA Y KAYAK

Autor: Cornelio Versanescu
Aspects metodológicos del entrenamiento en canoa y kayak

Autor: Corneliu Versanescu

En nuestros días, en el sentido ampliamente difundido dentro del deporte de alto rendimiento, el objetivo del entrenamiento, en canoa y kayak, persigue preparar deportistas a los efectos de alcanzar resultados de máximo nivel en las respectivas competiciones.

La canoa y el kayak forman parte del grupo de deportes cíclicos, desde el punto de vista técnico o de los deportes de resistencia (en régimen de fuerza y velocidad), desde el punto de vista del esfuerzo. Aquí caben matices, en función de las distancias (de 500 a 10.000 metros) en que se hace el esfuerzo, en régimen mixto (aeróbico y anaeróbico), en diferente proporción. A lo largo de la competición, la entrega tiene que ser completa, sin recesos, implicando todo el potencial físico y psíquico.

Los altos resultados en el deporte de canoa y kayak, expresados en la velocidad que se asegura a las embarcaciones a lo largo de la distancia de competición, dependen también de varios factores, cuyo significado sin embargo, en esta fase de nuestros conocimientos, no está por completo aclarado.

Sin entrar en pormenores, podemos, sin embargo, mencionar algunos de tales factores, los más importantes para alcanzar altos resultados, a nuestro criterio, son:

• aptitudes somáticas (talla, largo de los miembros superiores, peso, longitud del tronco, etc.);
• aptitudes coordinativas, vinculadas al nivel técnico del acto motor del manejo de la pala;
• aptitudes singulares, relacionadas con las cualidades físicas básicas y específicas del deporte de canoa y kayak (resistencia-fuerza-velocidad);
• capacidad funcional de ciertos sistemas y órganos (el corazón y el sistema circulatorio, metabolismo mus-
cular, sistema endocrino, sistema neuromuscular, sistema nervioso central con sus componentes psíquicos - voluntad y motivación) de la cual depende el nivel de la actividad motriz específica.

Todos estos factores -de expresión integrativa- se manifiestan en el metabolismo energético, cuyo conocimiento resulta ser una importante premisa para elaborar un adecuado concepto de preparación.

En nuestro criterio, al menos al nivel de interpretar el fenómeno por parte de los entrenadores, los datos que resultan del metabolismo energético, durante el esfuerzo hecho en la carrera de 1.000 m, podrían emplearse, con ciertos ajustes, también para las demás distancias.

En todo caso, el factor decisivo para alcanzar altos resultados en canoa y kayak, metabolismo energético, es el nivel VO₂ (ml/min), que se puede alcanzar sin que se formara el lactato.

Para las diferentes distancias se ponen en marcha todos los recursos energéticos, a saber:

- energía anaeróbica alactácida;
- energía anaeróbica lactácida (glucolítica);
- energía aeróbica (oxidativa).

El aporte de la energía anaeróbica alactácida al esfuerzo de competición, en canoa y kayak, es de aproximadamente un 6% en el caso de los seniors, de élite, un 7-8%, en los juveniles y cerca de un 10%, en el caso de las muchachas. Estos recursos energéticos anaeróbicos alactácidos intervienen y se agotan íntegramente en la primera parte de la carrera, de modo que en la distancia clásica carece de significado.

El aporte de la energía anaeróbica lactácida al esfuerzo de competición, en canoa y kayak, asciende a cerca de un 12% en el caso de los señores de élite, un 15%, en los juveniles y cerca del 20%, en el caso de las muchachas. El tamaño de tal fuente energía depende ante todo de la tolerancia al deterioro del ambiente interior, inducido por la lactocidemia, lo cual resulta ser una peculiaridad muy individual. Su promedio es de 20 minímulos de lactato en la sangre, en el caso de los deportistas de élite.

El aporte de la energía aeróbica (oxidativa) se refiere a:
El tamaño del consumo de \(\text{O}_2 \) alcanzado en el esfuerzo determina las posibilidades de suministrar tal energía;

mediante el entrenamiento adecuado se puede alcanzar, por la vía aeróbica, en un minuto, una productividad equivalente a toda la productividad anaeróbica láctica;

la energía aeróbica aporta el esfuerzo de competición en aproximadamente un 82%, en el caso de los senior, un 77% entre los jóvenes y aproximadamente un 70% en el caso de las muchachas.

Mediante entrenamiento adecuado, se puede contar con un aumento de la energía aeróbica (\(\text{VO}_2 \, \text{máx.} \)) de aproximadamente un 40%.

Tales cifras son orientativas; los deportistas de canoa y kayak, si aspiran a resultados de nivel internacional, deben tener cifras de \(\text{VO}_2 \, \text{máx.} \) de aproximadamente 6.500 ml./min., los muchachos y superiores a 5.000 ml/min. las muchachas y estar en condiciones de movilizar más de un 90% de tales posibilidades.

Hay que precisar a la vez que el tiempo requerido para activar cada tipo de metabolismo energético resulta ser bien diferente. Así, los dos mecanismos anaeróbicos resultan prácticamente utilizables de inmediato, o más exacto, en los primeros 20 segundos después de la señal de partida (los mecanismos alactácidos) y entre los segundos 20 y 60 los mecanismos lactácidos. En cambio, los fenómenos de energogénesis aeróbica nos aparecen como un proceso lento, cuyos valores máximos se alcanzan tras apenas 2 minutos.

El entrenamiento constituye, en nuestro criterio, la principal vía para alcanzar los resultados deportivos esperados. Al mismo tiempo, no nos entrenamos y nos quedamos esperando los resultados, sino, que, al conocer las exigencias actuales, nos preocupamos por realizar un entrenamiento bien ajustado a tales exigencias. Si tal entrenamiento, por diversas razones, no se pudiera realizar a los niveles del modelo, el mismo no deberá corregirse, sino abandonarse. Mantener entrenándose deportistas que no puedan estar al nivel de las exigencias del entrenamiento concebido de tal manera representa un fracaso, tanto en el plano social, como también en el individual. Al propio tiempo, hay que tener en cuenta que cada deportista, tanto en canoa, como también en kayak representa una individualidad que reacciona de una manera distinta.
La orientación general del entrenamiento tiene en cuenta dos direcciones principales:

- perfeccionar la maestría técnica en el manejo de la pala;
- aumentar las posibilidades del "motor" humano de impulsar a la embarcación, durante la competición, a la más alta velocidad promedio posible.

Para alcanzar resultados de nivel mundial, hacen falta, según nuestra experiencia, 4 años para señoritas y 5 años para los señores, siempre considerando que los factores implicados en el logro de los resultados (la calidad de los deportistas, de sus entrenadores, las condiciones organizativas y materiales, etc.) se encuentren a un nivel adecuado. Tal duración tiene en cuenta la máxima "compresión" del entrenamiento, lo cual quiere decir una continua preparación a lo largo de todo el año, a altos niveles diarios.

Los períodos mencionados de 4 y 5 años respectivamente se alargan proporcionalmente con las "rebajas" hechas, pero, a la vez, pueden acortarse, en el caso de los deportistas de excepción.

Nuestra propia experiencia, al seguir los esfuerzos acumulados y medidos, ante todo en el caso de los determinantes para alcanzar resultados de alto nivel en las distancias de competición, nos han permitido sacar los siguientes porcentajes de incremento (en 4 y 5 años respectivamente):

- **Capacidad de esfuerzo aeróbico**:

 Hemos tomado en consideración un solo índice - VO2 máximo, que muestra un aumento promedio de un 35%;

- **Capacidad de esfuerzo mixto (específico)**:
 - paleo en simuladores - aumento de un 30%;
 - trabajo con pesas (repeticiones/2-4 minutos), aumento de un 40%;
 - carrera de 800 m. (las señoritas) y 1600 m. (los señores) aumento de un 20%.

- **Capacidad de esfuerzo anaeróbico**

 - paleo en simuladores 1 minuto - 20% de aumento.
En cuanto a la capacidad aeróbica, donde hemos contado con muy buena tecnología, podemos decir que los aumentos están al nivel de los resultados señalados por la literatura especializada.

En el caso de la capacidad de esfuerzo mixto, a pesar de lo imperfecto de la tecnología de los tests, hemos estimado un aumento promedio de aproximadamente un 30%.

La capacidad anaeróbica, a pesar de no haber sido objeto de un gran número de entrenamientos, ha indicado aumentos de un 20%, lo cual está por encima de lo señalado por la literatura especializada.

De lo que antecede, podemos sacar ciertas conclusiones parciales acerca de las orientación general del entrenamiento, como sigue:

a) En el plano del aumento de las posibilidades del "motor" humano, con vistas a darle a la embarcación la mayor velocidad promedio durante la competición, el entrenamiento tiene que ser organizado de tal manera que asegure un aumento total alrededor del 30% y esto se puede realizar si detrás del respectivo resultado hay un aumento de aproximadamente un 40% de las posibilidades aeróbicas y de un 20% de las anaeróbicas lactávidas.

b) En cuanto al dominio y perfeccionamiento de la maestría técnica, el entrenamiento tiene que resolver:

 • el incremento acentuado del proceso de enseñanza de la técnicas de paleo, a los efectos de pasar lo antes posible al entrenamiento propiamente dicho, es decir al empleo de los medios de doble efecto, tanto en el nivel de la maestría técnicas, como también en el aumento de las posibilidades de motor humano;
 • el empleo de toda la gama de intensidades posibles, particularmente de la intensidad en régimen de competición.

Otra cuestión que se plantea en el caso del entrenamiento en el deporte de canoa y kayak es la de aclarar las principales direcciones de la preparación. En este caso, hay que dar respuesta a dos conceptos:
a) A través del entrenamiento hay que perseguir como objetivo principal la hipertrofia de las cualidades dominantes o de las deficientes?

b) El entrenamiento en el caso del kayak representa acaso un modelo unitario, válido a grandes rasgos tanto para los hombres como también para las mujeres?

Antes de escoger, valen algunas explicaciones.

Se sabe y la estadística lo confirma que, los hombres tienen mayor fuerza y las señoras mayor resistencia. Y a pesar de que el rasgo característico del grupo masculino es la fuerza, sus eventos (a excepción del de los 500 metros) son dos veces mayores que los femeninos (1000 y 10.000 metros en comparación con los 500 y 5.000 metros). en otras palabras, el esfuerzo requerido por los reglamentos de competición está en contradicción con las peculiaridades dominantes de los hombres y las señoras.

Tal desajuste entre la dominante motriz de los sexos y lo característico del esfuerzo en la competición determina la reducción hasta lo mínimo de las diferencias entre los entrenamientos de los hombres y los de las señoras. Es decir, en ambos casos, las metas perseguidas a través de los entrenamientos son las mismas y en el primer plano se encuentra el incremento de las posibilidades y el rendimiento del metabolismo energético aeróbico, a lo cual siguen sucesivamente:

- aumento de las posibilidades de los mecanismos que aseguran la compensación de la lactocidemia, así como también la tolerancia a la misma;
- aumento de las posibilidades de movilizar simultáneamente todos los tipos de recursos energéticos,
- aumento de las posibilidades del metabolismo energético anaeróbico.

La presencia en el último lugar del metabolismo está condicionado genéticamente y sus posibilidades de aumento resultan ser más modestas en comparación con los demás factores limitativos, mientras el techo máximo individual se alcanza en un período relativamente corto. En cambio, el metabolismo energético aeróbico requiere un gran volumen de entrenamiento, organizado sistemáticamente a lo largo de todo el año e incluso de varios años seguidos.
Una vez efectuados los entrenamientos y sacados los datos, el pró-
oxmo será prestar atención al desarrollo de las posibilidades descu-
biertas, mientras para las demás se requiere un régimen de mante-
nimiento. Tal decisión debe descansar en el análisis pormenorizado de los recursos empleados en el año anterior a la investigación. Si se nota que después de emplear medios destina-
dos a desarrollar cierta dirección los procesos no son notables y no se explican por el deterioro de la salud o por un cansancio crónico la mejor decisión será la mencionada al inicio de este tra-
bajo: renunciar a dichos deportistas.

Otra pregunta que se plantea en el caso de los métodos de entre-
namiento moderno en canoa y kayak es: ¿cuánto puede uno entre-
narse? Cuando no se trate de deportistas en el período de creci-
miento de su peso, la respuesta más operativa la de la relativa estabilidad del peso corpóreo, medido en condiciones básicas. Mientras dicho peso no aumente ni disminuya, se considera que el aporte energético y el consumo se encuentran en equilibrio. Por ejemplo, al asegurar un aporte calórico de 5.800 kcal/día, prome-
dio, del cual se quita el consumo metabólico básico (cerca de 1500-2000 kcal), quedan disponibles para los esfuerzos del entre-
namiento cerca de 4.000 kcal/día. El período en que se pueden consumir estas calorías depende de la intensidad del esfuerzo. Co-
mo punto de referencia, podemos mencionar que para un esfuerzo de tipo mixto (frecuencia cardíaca 175 + - golpes por minuto), re-
alizados por canoístas y kayakers de élite, el consumo va de 1.300 a 1.500 kcal por hora.

Los medios de entrenamiento que se emplean en canoa y kayak pueden agruparse de distinta manera, como por ejemplo:
• para remar en embarcaciones, en pontones y, por extensión, en simuladores; los que se emplean en tierra.

La relación cuantitativa anual entre los dos grupos de medios, en las condiciones de clima de nuestro país y expresada en número de clases, varía según sigue:
• deportistas de élite: remar: 2/3-3/4; en seco: 1/3-
1/4;
• deportistas corrientes: remar: 1/2-2/3; en seco:
1/2-1/3.

Tal criterio de diferenciación toma en consideración la meta per-
seguida:
• aprender y perfeccionar la técnica de paleo en ca-
noa y kayak;
• elevar el rendimiento motor específico:

Cabe mencionar que, en la práctica, muchos medios empleados
resuelven simultáneamente, en gran medida, los dos efectos men-
cionados, razón por la cual no resulta posible determinar ni si-
quiera a título orientativo, las relaciones cuantitativas existentes
entre ellos.

Por último, hay otro criterio de diferenciación, esta vez relaciona-
do exclusivamente con los medios encaminados a elevar el rendi-
miento motor, tanto a través del paleo, como también de los de-
más ejercicios incorporados en la así llamada clase "en seco". Tal
criterio es la intensidad del esfuerzo, del cual depende la orienta-
ción del proceso de adaptación - pues el entrenamiento consti-
uye, en plano biológico, un proceso de sucesiva adaptación a niveles
 motores cada vez más altos.

Desde tal punto de vista, consideramos necesario notar la existencias
de 4 niveles de intensidad, que pueden asegurar la óptima orienta-
ción de cada tipo de entrenamiento y tener en cuenta las actuales
exigencias del deporte de alto nivel, de la canoa y kayak.

De manera convencional, veremos situado las intensidades como
sigue:

R-1 = intensidad más alta que la requerida por la competición
(que es la máxima);

R-2 = intensidad de competición;

R-3 = intensidad más reducida que la de competición; su punto
de referencia es un 85-95% de la R-2;

R-4 = intensidad equivalente al 70-80% de la R-2, que representa
el nivel del umbral aeróbico-anaeróbico.

Por supuesto, tal distribución se vincula ante todo, con los medios
específicos empleados en agua, pero una vez "aprendidos" por los
deportistas, sobre la base de su memoria motriz y de los datos
objetivos acerca de la reacción del organismo (digamos el pulso,
los análisis bioquímicos, etc.) se debe llegar a estándards referentes a los medios en seco y se perseguirá equivaler los mismos con los estándars referentes a las actividades "en agua".

El análisis de los esfuerzos con la misma reactividad vegetativa ha puesto de relieve la singular semejanza, en múltiples planos, de la capacidad funcional del esfuerzo específico en el caso de la canoa y el kayak con otros ejercicios, a condición de que la duración del esfuerzo sea relativamente igual. Tal semejanza, de carácter lógico, permite aumentar o cambiar el esfuerzo específico, por diferentes razones (clima desfavorable, día de poca luz, etc.). Se podrán emplear otros medios, convencidos de que se ha realizado, en suficientes planos, lo que normalmente se habría obtenido a través de los medios específicos (paleo).

En el caso del entrenamiento "en agua", los principales índices que participan en la distribución de las cuatro intensidades son:

- la cadencia - número de golpes por minuto,
- el ritmo - correlación temporaria entre las principales fases del paleo: fase acuática y fase aérea;
- la intensidad - que orienta el efecto del entrenamiento.

Esto requiere estandarizar las velocidades de diferentes tipos de entrenamientos, para distintas distancias y en función de un determinado punto de referencia. Luego los deportistas o la tripulación aprenden o "guardan" en su memoria motriz tales velocidades, para poder reproducirlas lo más fielmente. Se entiende que periódicamente resulta necesario averiguar las velocidades por distancias normadas (en condiciones de calma chica en el agua), con el fin de consolidar lo aprendido.

El punto de referencia a los efectos de normar las velocidades de desplazamiento será, para cada tripulación, el tiempo -meta a realizar en el respectivo año. En función de tal velocidad, a la cual corresponde indirectamente una determinada intensidad, se fijan las velocidades de desplazamiento para los demás tipos de entrenamiento.

- el volumen del esfuerzo -que expresa hasta que nivel queda implicado el efecto de la intensidad del esfuerzo.
Los índices operacionales para el volumen del esfuerzo realizado "en agua" se refieren a la cantidad de kilómetros por sesión (14-18 km.), por semana (150-180 km) y por año (5.000-6.000 km.).

- La frecuencia cardíaca -que es la más sencilla solución para conocer las peculiaridades del paleo a distintas velocidades. De las investigaciones hechas, se ha notado que la frecuencia cardíaca, a lo largo de competencia, registra los siguientes valores:

 * antes de la salida: 135 latidos/ minuto
 * a los 10 segundos después de la salida: 170
 * a los 30 segundos después de la salida: 185
 * a los 60 segundos después de la salida: 190
 * luego se mantiene al nivel de 180-185 y
 * al final sube a 190.

Si se tiene en cuenta qué para el mismo nivel de esfuerzo (desde el estado de descanso hasta valores submáximos) y en el caso del mismo deportista, la correlación entre la frecuencia cardíaca y el VO2 es lineal, se pueden tomar en consideración los siguientes datos de frecuencia cardíacas para diferentes tipos de entrenamiento, con dominante aeróbica o mixta en embarcaciones monoplaza:

- R-1: 185 + -5
- R-2: 180 + -5
- R-3: 175 + -5

En todo caso, la estructura de la clase de entrenamiento, tanto "en agua", como también "en seco" debe tener una acción cualitativa prevista.

Si nos referimos a los entrenamientos "en seco", específicos para el deporte de canoa y kayak, sus medios podrán dividirse en dos grandes grupos:

a) ejercicios de carácter cíclico, de desplazamiento, indistintamente del tipo de locomoción: marcha, carrera, esquiar, natación, etc.;

b) ejercicios para aumentar la carga: el propio peso, con un colega, con pesas, con cintas elásticas u otros equipos todos en una posición relativamente estática.
El requisito fundamental, en el momento de escoger los medios, es el de pensar en que su empleo debe contribuir de forma substancial al aumento de las posibilidades motrices específicas para las distancias de las competiciones de canoa y kayak.

Los medios del primer grupo se dirigen ante todo a elevar las posibilidades en el campo de la resistencia, mientras los medios del segundo grupo llevan al incremento de la fuerza.

Los medios de progreso en el campo de la resistencia deben observar el principal elemento de progresión que es el incremento del volumen, mientras los medios relacionados con la fuerza tienen como objetivo la intensidad.

Cabe retener de las orientaciones metodicas relacionadas con el primer grupo de ejercicios:

- fijar la intensidad del esfuerzo, del trabajo al nivel aeróbico-anaeróbico;
- fijar el volumen del esfuerzo;
- fijar los descansos.

En el segundo entran todos los medios que forman parte de la así llamada reparación "de fuerza" de los deportistas de canoa y kayak.

La gama de los ejercicios "de carga subida" resulta muy larga, incluyendo también los ejercicios propiamente dichos de fuerza, de cargas altas o máximas. En nuestro criterio, justamente aquí se dan muchos errores, por causa de la tradición o de haber copiado de otros deportes, lo cual lleva a menudo a efectos no conformes con los requisitos del esfuerzo especifico en canoa y kayak.

Por lo tanto, recomendamos el empleo de pesos conformes con la posibilidad de ejecutar los ejercicios en ritmo óptimo, en tiempo bien determinado y en función de la carga, a su vez en dependencia de las R-1, R-2, R-3 y R-4. Otra recomendación se refiere a su empleo en los entrenamientos en circuito.

Antes de finalizar, estimo útil hacer una síntesis de los requisitos para alcanzar altos resultados en canoa y kayak.
1.- el deportista debe contar con datos superiores, en el momento de la selección, en cuanto a su nivel de desarrollo morfofuncional, bioquímico, psíquico y biométrico.

2.- el esfuerzo en el entrenamiento debe respetar ciertas reglas:
 - gran esfuerzo- pero sin sobrecargas;
 - esfuerzo planificado;
 - esfuerzo en aumento sistemático;
 - esfuerzo que crece todo el año;
 - esfuerzo rítmico e individual;
 - recuperación;

3.- Tienen efecto solamente los esfuerzos de gran consumo energético. Esto se hace de forma individual y repetida. La supercompensación asegura la protección preventiva del organismo.

4.- El organismo se desarrolla desde todos los puntos de vista hacia la dirección requerida por el esfuerzo. El estado de entrenamiento crece gracias a los estímulos (intensidad, frecuencia, duración y densidad).

5.- Los cambios surgen después de etapas de acumulación (3 semanas) de gran esfuerzo, a la cual siguen etapas de descarga (una semana), de conformidad con una regla biológica bien conocida (pero menos aplicada).

6.- Atención a la recuperación, desde todos los puntos de vista.

Mantengo el criterio de que no se puede hablar de un plan de preparación, destinado a un grupo o individuo, sin conocer previamente exactamente ciertos datos que permiten "retratarlo".

El método, empleado a menudo "de solicitar" ihágame un plan de entrenamiento! "carece ya de validez y los que siguen empleándolo lo hacen; bien por desconocer las reglas, bien por una falsa "cortesía" con respecto al solicitante.
LA TÉCNICA DEL PALEO EN CANOA, DE LA ESCUELA RUMANA

Autor: Mercurian, Octavian
La técnica del paleo en canoa, de la escuela rumana

Autor: Mercurian Octavian

La técnica del paleo en canoa representa el conjunto de movimientos realizados por el canoista en la embarcación para asegurar su propulsión. La técnica tiene como fin la asimilación de los procedimientos específicos de la canoa, la convalidación y el perfeccionamiento del sistema de adaptaciones motoras específicas, que están en la base de las acciones de movimientos propias de dichas adaptaciones.

En la etapa de iniciación dentro de la técnica del paleo en canoa, se busca la asimilación del mecanismo de base que estructura el nivel más alto obtenido por la técnica de propulsión de la canoa.

La asimilación de este mecanismo es obligatorio, pero sin embargo adquiere el sello de las particularidades individuales del deportista. En una etapa superior de la preparación se llega a la valoración óptima de interacción entre la técnica standard (modelos) y las particularidades antropométricas y motoras del deportista.

La maestría técnica en canoa adquiere una importancia mayor frente a la del kayak, por su dificultad:

- el equilibrio: el centro de gravitación es mucho más alto.

- la conducción de la embarcación: la propulsión se realiza sobre un sólo lado.

- el mantenimiento de la dirección: la canoa no está provista de timón, la dirección se mantiene mediante la manipulación de la pala especialmente al final del golpe.
Con todo esto, más la incómoda posición del canoista -de rodillas- podemos afirmar que esta disciplina deportiva posee un grado de dificultad especial.

El entrenador, en una primera selección, tendrá que tener en cuenta, para el futuro rendimiento del canoista su bagaje de cualidades físicas y especialmente su destreza. De las observaciones estadísticas realizadas por nosotros a lo largo de más de 30 años de actividad dentro del kayak-canoa, hemos sacado como muy importante el hecho de que los buenos palistas tienen muy desarrollada esta cualidad de destreza, que se manifiesta por el fácil aprendizaje de la técnica correcta, en cualquier rama deportiva, con un alto grado de dificultad técnica. Han jugado bien al fútbol, baloncesto y nadaban correctamente y esquivaban bastante bien, encontrando en la mayoría de los casos la solución de sus necesidades técnicas, de esta rama deportiva imitando el movimiento visualizado en los futbolistas, baloncestistas, nadadores o esquiadores que fueron campeones.

Cuando se nos presentó al joven Patzcichin hace ya 24 años y le apreciamos su destreza para jugar al fútbol, correr, nadar y su rapidez de asimilación de las técnicas de cualquier deporte nuestra recomendación como entrenadores se dirigía hacia la práctica de la canoa. Recomendación que felizmente ha correspondido con sus deseos. Lo mismo se produjo en los primeros canoistas en los años 51 y 52, nacimiento del deporte de la canoa en nuestro país, dentro de estos deportistas podemos citar a los campeones mundiales y olímpicos, Simionov, etc. ...

Hasta el año 1951 la canoa en Rumania ha sido practicada de manera empírica sin prestar atención tanto a la posición dentro de la embarcación como a la técnica de pallear. La posición dentro de las embarcaciones era una posición sentada sobre el barco y el paleo se hacía según lo entendía cada uno.

Por supuesto que las embarcaciones no estaban o no eran estandarizadas y eran más pesadas y más inestables.

Las pruebas de canoa en las competiciones internas (no se podía hablar de internacionales), se desarrollaban entre o dentro de las pruebas de kayak.
En el verano de 1951, hemos recibido la visita de dos grandes canoístas checos campeones olímpicos en la olimpiada de Londres de 1948 y campeonatos mundiales de 1950. Siguiendo su modelo se ha formado el núcleo de la Escuela Rumana de Canoa desde el punto de vista técnico.

Se han beneficiado directamente por las demostraciones realizadas por estos dos grandes canoístas dentro de la canoa individual en C-1 como en la canoa de equipo C-2 y entre ellos han sido destacables Joan Robman y Ismael Sout quien en el año siguiente participan en competiciones internacionales y en 1956, han ganado 3 de las cuatro pruebas de canoa en la Olímpiada de Melbourne, y es desde este momento cuando se puede hablar de la Escuela Rumana de Canoa. De esto deducimos otro aspecto en principio muy importante; el que un modelo técnico eficiente implantado con todos sus detalles en un terreno virgen sin observaciones anteriores, supone una experiencia en tiempo y movilizaciones de técnica muy difícil de realizar, sin embargo es una ventaja muy grande al permitir la asimilación directa de muchos años de investigación y perfeccionamiento consiguiendo mejoras técnicas más realistas y eficientes teniendo el deportista posibilidades en este sentido. Ejemplos tenemos bastantes tanto en Kayak y canoa como en otros deportes. El balonmano masculino rumano cuatro veces campeón mundial ha compartido sus experiencias técnicas con la URSS en los años 65-70 y en unos años el equipo de la URSS ha llegado a ser una potencia mundial.

Desde 1956 hasta 1986 los canoístas rumanos han ganado en juegos olímpicos, campeonatos del mundo y europeos 25 medallas de oro.

La técnica propiamente dicha

1.- La posición de la pierna arrodillada sobre la almohadilla o rodillera, del lado que se palea con la fijación de la otra pierna adelante con la punta del pie orientada hacia la línea media de la canoa.

2.-El soporte del pie trasero en la parte opuesta de la canoa se apoya en un tope y la pierna arrodillada se fija a una tabla de madera dispuesta transversalmente y sujeta debajo de las bordas a los lados de la canoa apoyándose esta tabla sobre los gemelos. Se forma de esta manera un polígono de sosten del canoísta en forma de trapecio por la posición de los dos miembros inferiores. Los lados del trapecio están formados por:
- Muslo del miembro fijo de la rodillera.

- Muslo del miembro delantero desde la articulación de la cadera hasta la articulación de la rodilla.

- La pierna y el pie fijados en frente.

- La plataforma de la canoa.

Este trapezio rectangular tiene los ángulos superiores en un ángulo recto y otro obtuso de más de 90°.

El tronco está flexionado hacia delante y los brazos que mantienen la pala son extendidos uno por encima de la cabeza en prolongación del tronco y el otro hacia delante para que la pala se prepare para realizar el ataque en el agua.

1.- Técnica rígido fija.

Donde el trapezio no modifica su forma. Esta técnica en Rumania fue adaptada entre los años 50-60 y sus representantes de esa técnica ha sido... y entre otros Patzaicin.

Pero esa técnica fue desechada tras la Olimpiada de Montreal de 1976 y después de análisis profundos realizados por los entrenadores.

2.- Técnica dinámica

Donde el trapezio del tren inferior modifica su forma por el cambio de los ángulos superiores e inferiores, formándose un rombo orientado hacia la parte delantera de la canoa, permitiendo un alargamiento marcado en el golpe de la pala aumentándose entre 10 a 20 cm. siendo más larga esta palada que en la técnica rígida.
LAS FASES DEL PALEO

1. Fase de preparación del golpe.

Representa la fase entre la posición de máxima extensión hacia delante de la pala y su entrada en el agua. Durante esta fase, el canoista inicia el paleo y la punta de la pala desciende verticalmente en el agua mediante la rotación del tronco/cadera y la retracción del hombro hacia atrás.

2. Fase de entrada de la pala en el agua- el ataque- el sostén relativo.

Representa la posición en la cual la pala entra en contacto con el agua. El canoista tira la pala hacia atrás, fijándola relativamente en el agua, pero hasta su posición vertical y debido a la velocidad de ataque sobre el agua, se forma un triángulo denominado triángulo de potencia, "potencia Delta".

Esta fase es el movimiento continuado de la fase anterior hacia la posición vertical. Durante esta fase el cuerpo del canoista se flexiona en la cadera, para ayudar a la entrada de la pala.

El tronco ejecuta ahora una rotación en el eje vertical: rotación de cadera, tirando el hombro hacia atrás, del lado en el que se palea.

El canoista pasa de la posición más inestable, a la más estable dentro del ciclo de ejecución del golpe. La fase de "agarre" es una caída gravitacional del tronco sobre la pala, movimiento que modificado el ángulo agudo hacia los 90°, favorece y ayuda el desplazamiento de la canoa hacia adelante.

3. Fase de potencia (fijación de la pala en el agua)

Los brazos de arriba y de abajo, que sujetan la pala, son extendidos, con la línea de los hombros orientada de tal modo, que el hombro del lado en que se ejecuta el golpe está muy adelantado. En esta fase se realiza la más profunda inmersión de la pala, durante el ciclo de movimientos del paleo.

Para prolongar el estado de perpendicularidad de la pala, el paralelograma del tren inferior, se modifica llegándose a un rectángulo
mediante el empuje del miembro inferior de sosten, con el muslo de sosten perpendicular sobre la superficie del agua. El tronco tira de la pala fijada en el agua y mediante su extensión llega a una posición vertical, realizando también un movimiento de rotación en el eje longitudinal. El centro de gravitación del canoista se eleva y se desplaza hacia atrás, propulsando la canoa hacia adelante.

Durante el intervalo, la rodilla de apoyo (sosten) se sitúa cerca de la pala fijada en el agua. Es la fase más larga de la parte dinámica del golpe, fase donde la canoa llega a tener el máximo de velocidad de deslizamiento. La canoa avanza con una desviación hacia el lado opuesto al paleo.

Durante esta fase, todos los segmentos que componen este movimiento (miembros inferiores, cadera, tronco, brazos) no deben pararse por completo, ellos formando un complejo de segmentos dinámicos, teniendo como única finalidad: la obtención de una velocidad la más alta y de más larga duración posible.

4. Fase de corrección de la dirección -gobierno-

Durante las fases de potencia, el esfuerzo del canoista se efectúa manejando la pala en una parte lateral de la canoa, lo que produce un desplazamiento de la canoa hacia adelante, pero en el mismo tiempo, también, un movimiento lateral hacia el lado opuesto.

Esta desviación que se produce durante cada golpe, debe ser corregida, imprimiendo a la canoa un desplazamiento lo más recto y al mismo tiempo lo más continuo.

Es aquí donde interviene una estricta especialización técnica, el movimiento automatizándose dentro de un modelo perfecto, que determinará sustancialmente el valor de un canoista de C-1 frente al canoista especializado en C-2.

En el momento en que la pala ha llegado al nivel del muslo de sosten (apoyo) que ha vuelto a la posición vertical, perpendicular sobre la superficie del agua, se inicia la fase de corrección de la dirección.

La base de sosten ha cambiado su forma en un trapezio rectangular, y todos los movimientos de los segmentos de este tren inferior que componen esta base, cesan.
El brazo (mano) de arriba que sostiene y gobierna la mulettilla, es llevada -en extensión-, hacia el interior de la canoa, iniciándose una rotación de la pala hacia la parte lateral de la canoa, de tal modo, que la superficie de la pala sobre la cual se produce la presión del apoyo, haga, en relación con el eje de la canoa, un ángulo mayor de 90°, y en relación con la superficie del agua, un ángulo agudo.

El brazo (mano) de abajo, con una flexión del codo ayuda a la rotación de la pala y realiza un empuje de la parte trasera de la canoa, separándola de la pala, que tiene ya su punto de apoyo en el agua, cambiado a otro plano.

Durante esta fase, se produce un frenado, debido a la velocidad de la canoa y al cambio de plano de la pala en el agua, con lo que la canoa vuelve a su dirección normal de deslizamiento.

Esta maniobra de gobierno, se realiza simultáneamente con la extracción de la pala fuera del agua, extracción que se realiza también automáticamente con el avance de la canoa y su abandono del sitio donde la pala ha representado el punto de apoyo.

Normalmente, sin embargo, hasta la extracción de la pala fuera del agua, el canoista debe efectuar sobre la pala una acción dinámica con el objetivo de obtener un deslizamiento de la canoa hacia adelante con un máximo de velocidad y continuidad.

5. Fase de extracción de la pala fuera del agua.

Es la última fase dinámica del golpe, pero la influencia de esta fase sobre el mantenimiento de la velocidad de la canoa es nula, el único deber del canoista es la de reducir al máximo la pérdida de velocidad.

6. Fase de vuelta hacia adelante.

Es la fase comprendida entre la extracción de la pala fuera del agua y la fase de preparación del golpe. Desde el punto de vista de su influencia sobre el avance de la canoa, es una fase pasiva; la pala se eleva encima del agua, es llevada hacia adelante y lateral por los brazos que se elevan y se proyectan hacia delante; al mismo tiempo el brazo que sostiene la mulettilla se levanta encima de la cabeza, y el otro brazo se extiende, el trapezio cambia sus ángulos para formar un paralelogramo, el cuerpo se flexiona hacia ade-
lante, y se ejecuta una rotación llevando hacia adelante el hombro del lado de paleo.

Esta fase se caracteriza por la gran inestabilidad del canoista, obligándole a obtener un equilibrio perfecto, para que la canoa no tenga oscilaciones en sus ejes longitudinal y tranversal (brazos).
METODO DE ENTRENAMIENTO EN LA PIRAGÜA DE PISTA

Autor: Dr. Bernd A. Kasprzak
Método de entrenamiento en la piragua de pista

Autor: Dr. Bernd A. Kasprzak, especialista en medicina (traumatología) de la universidad de Friburgo.

Conferencia en el tercer congreso "médico y atleta en el campo de las olímpiadas" del 27 al 29 de Noviembre de 1987 en Bad Wörrishofen.

1. ADVERTENCIAS

La piragua de competición tiene tres modalidades:

- Piragua de pista
- Piragua de Aguas Bravas
- Piragua de Slalom

de las tres diferentes modalidades hay Campeonatos del Mundo separados. En la olímpiada solo se da el caso de la piragua de pista, sobre la cual vamos a hablar. En la olímpiada, los hombres pueden remar en las modalidades de kayak y canoa, las distancias de 500 y 1.000 metros. Para las mujeres solo existen la modalidad de akayak sobre 500 metros.

En los Campeonatos de Mundo, los hombres pueden remar además fondo (10.000 metros) en kayak y canoa.
Tiempos del Campeonato del Mundo:

500 m.:

- Kayak hombre: entre 1'25 y 1'42.
- Canoa hombre: entre 1'40 y 1'55
- Kayak mujer: entre 1'48 y 1'58

1.000 m.:

- Kayak hombre: entre 3' y 3'40
- Canoa hombre: sobre los cuatro minutos

En las pruebas de fondo, los tiempos están sobre los 35 y 45 minutos.

Los tiempos y las oportunidades de ganar están condicionadas fuertemente por los diferentes ámbitos de cada competición, debido a las diferencias de viento, de olas, de profundidad del agua y de la dureza del agua.

Por estas razones, en las competiciones de piragüismo no se realizan listas de récords. Por estas mismas razones, la ejecución de un plan de entrenamiento para agua es difícil. Para el dominio de las exigencias de la piragua tiene que desarrollarse lo mejor posible las cualidades físicas (fuerza, velocidad y duración), y además existen fuertes exigencias en la posibilidad de coordinación como en las capacidades técnicas. Muy importantes para la competición son las posibilidades de aceleración y la duración de la fuerza como la máxima ganancia de energía anaeróbica.

2. PLANIFICACION ANUAL

El entrenamiento de la temporada está dividido en tres apartados esenciales (ver esquema 1).

Para la delimitación temporal no es el comienzo del año de entrenamiento, si no el punto culminante de competición (olímpíada, campeonato del mundo) el que nos marca el posterior entrena-
miento. Desde la competición mundial se deducen dos veces diez semanas. En estos dos apartados se efectúa el verdadero entrenamiento para la competición. El primer período de diez semanas sirve para el desarrollo general de resistencia y fuerza, así como para la instrucción de las destrezas técnicas. Debido a las diferentes tareas de entrenamiento en los diferentes periodos es necesario que el método de entrenamiento sea diferente.

PIC = preparación inmediata antes de las competiciones
. reconocimiento de los medios de entrenamiento
. revisión de los medios de entrenamiento
. controles de laboratorio (CPK (Transaminasas), Urea, etc...)

En el primer período del entrenamiento que coincide con el comienzo de la temporada es suficiente la creación de carga de resistencia aeróbica en unos intervalos de seis semanas. Los controles se efectúan con la ayuda de un ergómetro con una manivela que gira, en cuya traviesa se coloca un ergómetro de bicicleta Siemens sobre un soporte. Los pedales para los pies se cambian por la pértiga de una pala serrada, el piragüista se sienta sobre un asiento elevado de quita y pon.

Como diagrama de carga se hace un test progresivo con etapas de tres minutos de duración, que empieza por treinta vatios. Para los hombres sube cuarenta vatios por etapa y para las mujeres treinta vatios (ver esquema 2). El control termina cuando el atleta no
puede conseguir unas sesenta vueltas por minuto. Al final de cada etapa se toman las pulsaciones del corazón y se recoge una muestra de sangre de los capilares de la oreja para hacer la prueba del ácido láctico.

ERGOMETRO

Carga por etapas (Test progresivo por etapas)
3 minutos de carga por etapa

CRITERIOS DE APROVECHAMIENTO:
- Carga en el ergómetro
- Umbral aeróbico-anaeróbico (Concentración ácido láctico)
- Máxima etapa de carga (ácido láctico)

Como criterios de valoración se verifica la determinación del umbral aeróbico-anaeróbico en cerca de cuatro milímetros por litro de ácido láctico medido en vatios, con sus correspondientes pulsaciones del corazón y la máxima capacidad de carga anaeróbica-láctica medida en milímetros por litro de concentración de ácido láctico, así como también se clasifican el correspondiente nivel de carga en vatios y la duración temporal hasta la interrupción de la carga. Con estas mediciones objetivas en unas condiciones estándar se crea una oportunidad para que los médicos puedan controlar el desarrollo del rendimiento en la zona de la constancia aeróbica. Al final del primer periodo de entrenamiento deberían tener los kayakistas hombres el umbral aeróbico-anaeróbico de 200 vatios y las damas algo más de 120 vatios.

A la vez es con la determinación de las pulsaciones del corazón en cuatro milímetros por litro de ácido láctico una buena forma de
seguir un entrenamiento. Con la ayuda de un pulsómetro podemos controlar y elegir la intensidad de carga adecuada en un entrenamiento prolongado.

En el segundo período empieza el verdadero entrenamiento para las competiciones mundiales con una progresiva carga anaeróbica-álctica y anaeróbica-láctica.

El tercer período de entrenamiento empieza con una repetición del segundo período en un nivel más alto. El peligro de una carga no adecuada aumenta, al igual que las lesiones. Como agravante obra en este período el ritmo del corazón, cuando este no presenta el parámetro adecuado para un método de entrenamiento en el ámbito de carga anaeróbica. Reconocimientos en la balsa con unas condiciones de agua reproducidas y con una exacta medición de la fuerza ayudan a resolver este problema. La medicina deportiva ayuda a mejorar el método de entrenamiento en el agua.

Los reconocimientos médicos proporcionan resultados para la optimización de la sucesión de carga, de la fijación de descansos y de la fijación de las series de pausas como de la intensidad de entrenamiento y de la capacidad de entrenamiento. La concentración de ácido láctico en la sangre se mide en diferentes etapas de carga. Si de esta forma se encuentran o se mejoran los métodos adecuados de entrenamiento, ya son suficientes estos reconocimientos para dirigir posteriormente el entrenamiento con la medicina deportiva ya solo se controla la intensidad del entrenamiento (se mide la concentración de ácido láctico en la sangre). Estos reconocimientos aportan al entrenador la prueba de si se está utilizando la intensidad de carga adecuada en el ámbito de la asimilación anaeróbica o no. El entrenador tiene así la oportunidad de una rápida corrección en el programa con una variación de la carga de entrenamiento. Con vistas a las competiciones mundiales son muy importantes los reconocimientos durante el entrenamiento.

3. PREPARACION INMEDIATA ANTES DE LAS COMPETICIONES

En esta fase tan importante del entrenamiento, que debería ser realizada entre las cuatro y ocho semanas antes de la competición más importante, es la medicina deportiva esencial para la prevención de lesiones y enfermedades del piragüista así como para el óptimo desarrollo del rendimiento en el momento justo. Fundamental es que se tenga en cuenta que el desarrollo del rendimien-
to sólo se consigue en el conjunto de la carga de entrenamiento y de la recuperación. Esto significa (desde el punto de vista médico): cuanto mejor y más rápida sea la recuperación, más y mejor se va a poder entrenar y de esta manera es más rápido el desarrollo del rendimiento.

En este contexto tiene el entrenador la tarea de realizar una óptima carga de entrenamiento para los deportistas, y el médico deportivo debe ayudarle con unos procedimientos óptimos de recuperación y regeneración. Ya que la obtención de un rendimiento óptimo solo se consigue con la carga de entrenamiento en el ámbito físico y psíquico del atleta, es necesaria la regeneración con la ayuda del médico y del fisioterapeuta (esquema 3).

Esquema 3.

PREPARACION INMEDIATA ANTES DE LAS COMPETICIONES

(4-8 semanas antes de la competición)

DESAÑRROLO DEL RENDIMIENTO = CARGA DE ENTRENAMIENTO Y RECUPERACION

Cuanta más rápida y mejor se la recuperación
-mejor y más se puede entrenar
-mejor y más rápido es el desarrollo del rendimiento!

ALCANCE DEL RENDIMIENTO OPTIMO
Cargas de entrenamiento en el ámbito físico y psíquico de la capacidad de carga del atleta.

CONCLUSION
Crear condiciones óptimas de regeneración!

En esta fase del entrenamiento de carga máxima aparecen diferentes peligros (esquema 4). Debido a un error en la relación entre carga de entrenamiento y la recuperación puede crearse un síndrome de sobreentrenamiento. Cargas incompletas e intensivas pueden llevar a más lesiones en los aparatos ginnásticos y en la musculatura. A la vez, hay más facilidad de padecer enfermedades infecciosas y de sufrir una inestabilidad psíquica. En este sentido hay que tener en cuenta, que el rendimiento solo se puede mante-
ner de una a tres semanas. Después viene irremisiblemente una pérdida de rendimiento o una masiva aparición de peligros (lesiones, enfermedades...).

Esquema 4.

PELIGROS DE LA PREPARACION INMEDIATA ANTES COMPETICIONES

- Síndrome de sobreentrenamiento (desproporción entre la carga de entrenamiento y la recuperación)
- Alto peligro de lesiones (músculo y huesos)
- Posibilidad de contraer enfermedades contagiosas
- Inestabilidad psíquica

El rendimiento óptimo solo se puede mantener de una a tres semanas.

Desde el punto de vista médico se deducen los puntos que aparecen en el esquema cinco. Semanalmente, es necesario realizar dos o tres pruebas de métodos de entrenamiento para garantizar una óptima dirección del entrenamiento. Para un pronto reconocimiento de síndromes de sobrecarga, han de realizarse uno o dos análisis de sangre, en los que se estudiarán sobre todo, parámetros como la urea, creatina (creatina o creatinquinasa), transaminasas y electrolitos. En relación a este tema, tiene gran importancia la ayuda profiláctica del proceso de regeneración como substitución de productos de construcción (aminoácidos-proteínas?), vitaminas, electrolitos y oligoelementos. Paralelamente, hay que tener una óptima profilaxis de sobrecargas locales del apartado locomotor mediante masajes, medidas fisioterapias, medicamentos orales y posiblemente inyecciones. Un trabajo decisivo es la organización de una efectiva profilaxis contra infecciones en forma de visitas a saunas, duchas de agua alternativa (tipo hidromasajes), masajes con cepillos, dosis orales de vacunas y, para atletas especialmente achacosos, se pueden suministrar inyecciones de gamma-globulina y sustancias tropotropilas.
Esquema 5.

TAREAS DE LOS MEDICOS DURANTE LA PREPARACION

- Método de Entrenamiento óptimo
 Controles médicos para medir el ácido láctico
- Reconocimientos de apariciones de sobrecarga
 Análisis de sangre (Urea, creatinkinasa)
- Optimos apoyos en el proceso de regeneración física
 Sustitución de sustancias importantes (aminoácidos-proteínas),
 de vitaminas y de electrólitos, oligoelementos.
- Prevención de sobrecargas en el aparato locomotor
 Masajes, medidas fisioterapéuticas, medicamentos, inyecciones
- Organización de profilaxis contra infecciones
 Sauna, inyecciones, vacunas
- Dirección y estabilización psíquica del atleta.

No por último, la dirección y estabilización física del atleta por parte del médico posee una en parte decisiva significación para el resultado de las competiciones, ya que por desgracia, gran parte de los entrenadores no se suelen considerar como pedagogos, sino que solo se sienten como mediador es de conocimientos. En este caso, debería guardarse el argumento de despreciar al atleta que es muy mayor como disculpa de la falta de cualidades pedagógicas del entrenador o de falta de compromiso. Justamente el atleta de mayor edad con capacidad de razonar necesita, en la fase del entrenamiento y de la competición con mayor carga física de la dirección de un entrenador con experiencias pedagógicas. La estabilización física del atleta son unas cuantas regatas como preparación igualmente importantes.

Resumiendo, hay que resaltar, que la fase más decisiva del entrenamiento (antes de las competiciones más importantes) es muy importante para la actividad cualificada y asustada de un entrenador como la de un médico y la de un fisioterapeuta. Si no se efectúan en esta fase de entrenamiento cuidados médicos, si no solo cuando va a ser la competición más importante, ya es demasiado tarde, y la baja de deportistas de élite lesionados es inevitable y pre-programada. Solo como observación de estas conclusiones hay que evitar en Seúl 1988 las miserables lesionés de los Angeles 1984.
ESTRUCTURA DE LA PRESTACION
EN LOS DEPORTES DE
RESISTENCIA

Autor: George Neumann
Estructura de la prestación en los deportes de resistencia

Aspectos médicos de la estructura de la prestación en los deportes de resistencia. Resistencia de breve y media duración.

Autor: George Neumamm, Instituto de investigación para la cultura física y los deportes, Lipsia

La estructura de la prestación es un parámetro de referencia para el entrenamiento de alto nivel, en cuanto que caracteriza el estado de desarrollo de capacidades, habilidades, factores y cualidades de la personalidad, en el periodo de rendimiento máximo del atleta. Si se parte de las diversas solicitudes de la musculatura, de los sistemas cardiovascular, nervioso y metabólico determinadas por las cargas de entrenamiento y de competición en las disciplinas de los deportes de resistencia, es posible una clasificación de los diversos tipos de resistencia, basada en la duración de las cargas mismas. En el presente artículo se tratarán las bases biológicas y científicas de la resistencia de breve y media duración.

1. Introducción

El entrenamiento produce en el organismo del atleta adaptaciones que le capacitan para realizar una prestación durante más tiempo, con mayor rapidez y eficacia.

Cada adaptación es producida por un entrenamiento que debe constituir realmente un estímulo.

Si no es difícil mejorar partiendo de un estándar de resultados bajo, no sucede lo mismo si se quiere mejorar posteriormente un nivel de resultados elevados alcanzado después de un entrenamiento plurianual de alto nivel.
En los deportes de resistencia, usando procedimientos y modelos matemáticos adecuados, es posible predeterminar cuáles serán los valores de incremento posibles en la evolución de los resultados. Pero desde el punto de vista práctico, el entrenador se enfrenta al problema de buscar (y encontrar) soluciones metodológicas que permitan obtener el desarrollo de la prestación prevista. Los parámetros que usan para orientarse en la elaboración de la nueva medida de carga necesaria para alcanzar este fin son la estructura de la prestación prevista, o la estructura del resultado de competición que se quiere conseguir.

En un primer artículo sobre este tema (Neumann 1990), tratamos de la estructura de las prestaciones en los deportes de resistencia de larga duración (prolongada), omitiendo los procesos de regulación en las cargas de resistencia de duración breve (Rbd) y media (Rmd) que serán objeto de este artículo. (1)

El desarrollo de las capacidades motoras-resistencia, rapidez, fuerza y coordinación- necesario para obtener prestaciones específicas elevadas en los deportes de Rbd y Rmd es de muy diferente nivel del de los deportes de resistencia de larga duración (ver figura 1). En efecto, la menor duración del tiempo de competición implica bien un compromiso de fuerza más alto para el arranque propulsivo, o bien una frecuencia más elevada de movimientos.

Figura 1.- Representación gráfica de como las capacidades: resistencia, fuerza y velocidad son diversamente solicitadas en las cargas de resistencia de duración breve, media y larga.

Nota: (1) Para el concepto de la «estructura de la prestación» ver a G. Neumann. La estructura de la prestación en los deportes de resistencia, Sds-Rivista di cultura sportiva, 9, 1990,20, 66-72 (n.d.t.).
Las capacidades motoras, necesarias para las prestaciones de Rbd y Rmd, están integradas, por medio de los correspondientes modelos de control neuromuscular, en un proceso específico de movimiento (técnica deportiva) propio de cada uno de los deportes. Además los criterios cualitativos de la prestación motora (rapidez, precisión, eficacia, etc.) en los deportes de Rbd y Rmd tienen un valor mayor que en los deportes de Rld.

Los estudios sobre la distribución de las fibras musculares en los atletas confirman esta afirmación. Como norma, los mejores atletas de distancias breves de los deportes de resistencia (por ejemplo, 400 y 800 m en atletismo), tienen un mayor tanto por ciento de fibras de contracción rápida (FTF) que los que destacan en distancias más largas de estos mismos deportes (por ejemplo, en maratón). Por sus características fisiológicas las FTF muestran una función más elevada en las pretensiones breves e intensas con respecto a las fibras musculares de contracción lenta (STF).

2. Resistencia de duración breve (Rbd)

Escala temporal

La resistencia de duración breve comprende una escala temporal que va de 35 s a 2 min. La elección de hacer que este tipo de resistencia empiece desde 35 s se justifica por el hecho de que los resultados de competición en la disciplina de resistencia en que se alcanza mayor velocidad, es decir, en los 500 m en patinaje de velocidad sobre hielo, se acercan a este tiempo. Inicialmente la resistencia de duración breve se empezaba a los 40 s. En este espacio temporal de 35 s a 2 min se incluyen los 100 m de la natación, los 500 y 1000 m del patinaje de velocidad sobre hielo, los 1000 m cronometrados del ciclismo en pista, los 400 y 800 m de atletismo, y los 500 m de las disciplinas de piragüismo.

En realidad, desde el punto de vista biológico, los límites entre una carga que se puede considerar de sprint y la prestación más breve de resistencia, no están claramente definidos.

La definición formal de los límites de la resistencia en 35 s está en consonancia con un concepto nuevo introducido en la praxis, y que ha surgido por la introducción oficial de los 50 m en natación. De todos modos, en lenguaje común, las distancias más cortas de los deportes de resistencia se indican también como carreras de velocidad prolongada.
Presuposiciones energéticas de la prestación y de la regulación del metabolismo

En el breve tiempo de su esfuerzo máximo, los músculos pueden utilizar sólo reservas locales de energía, que como se sabe son el trifosfato de adenosina (ATP), el fosfato de creatina (CP) y el glucógeno.

En este breve tiempo, es posible recurrir sólo mínimamente a un suministro suplementario de energía, representado por el glucógeno hepático, que proporciona glucosa que se transporta al músculo a través de la sangre (2). La producción de glucosa en el hígado y su paso de la sangre al músculo requieren cerca de un minuto.

En la interpretación de las bases energéticas de las prestaciones de Rbd, todavía domina la idea de que el porcentaje de transformación de la energía por vía lactácida es muy elevado. Por el contrario, según nuevos datos experimentales, el porcentaje de metabolismo energético anaeróbio implicado sería menor (cuadro 1). Ya en una carga de 1 minuto de duración, el 50% de la energía necesaria vendría suministrado por vía aerobia (ver figura 2). Estos datos se han sacado de Medbo/Tabata (1989) basándose en la medición corriente del déficit de O2 (ver figura 3).

Nota: (2) Como ya se sabe, el glucógeno es una forma de depósito de la glucosa y ésta va a los músculos a través de la sangre.
<table>
<thead>
<tr>
<th>Sistema funcional</th>
<th>Parámetros</th>
<th>Resistencia de dur. breve (Rbd) (35 s) 1-2 min</th>
<th>Resistencia de dur. media (Rmd) 2 hasta 10 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema cardiocirculatorio</td>
<td>Fc (puls/min)</td>
<td>185-200</td>
<td>180-210</td>
</tr>
<tr>
<td>Consumo de O₂</td>
<td>% VO₂max.</td>
<td>95-100</td>
<td>95-100</td>
</tr>
<tr>
<td>Producción de energía</td>
<td>% acrobia</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>% anaerobia</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>Consumo energético (1 kcal = 419 kJ)</td>
<td>kJ min</td>
<td>160</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>kJ total</td>
<td>160-320</td>
<td>320-1200</td>
</tr>
<tr>
<td></td>
<td>% glucógeno muscular</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>Variaciones metabólicas</td>
<td>Acidos grasos libres (mMol/l)</td>
<td>0,50</td>
<td>0,50</td>
</tr>
<tr>
<td></td>
<td>Lactato (mMol/l)</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Acido b-Hidroxibutírico (microMol/l)</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Urea sérica (Dmoll)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Alanina (microMol/l)</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Cortisol* (microMol/l)</td>
<td>400</td>
<td>400</td>
</tr>
</tbody>
</table>

Cuadro 1.- Estructura de la prestación resistencia de duración breve y media. Los parámetros biológicos son los de los sistemas funcionales utilizados en condiciones de competición en el sector de alto nivel (*regulación del estrés*).

![Presupuesto Global de energía](image)

Figura 2.- Utilización de las vías aeróbica y anaeróbica para la producción de energía en las prestaciones de Rbd. El punto de convergencia entre las dos vías se alcanza después de 1 min de carga intensiva. Por lo cual, ya con una carga de más de 90 s de duración, la mayor parte de la energía se produce por vía aeróbica.
De los resultados de estos autores, se saca como conclusión que hasta ahora el porcentaje de transformación anaerobia de la energía en las cargas de duración breve se ha calculado en exceso. Según estos autores (1989) el metabolismo anaerobio del ATP ascendería en vez de a 60 mMol/kg de músculo a sólo 36 mMol/kg.

Una valoración diferente de la capacidad del sistema glucósico se encuentra en Spriet y colab. (1987), quienes con el empleo de electroestimulación, señalan un flujo de energía anaeróbica de unos 200 mMol de ATP/kg de masa muscular delgada en un periodo de 74 a 100 s. Sólo por debajo de esto disminuye la producción de fuerza muscular.

Esta nueva valoración del metabolismo energético aeróbico y anaeróbico en las cargas intensivas de Rbd, responde mejor a las indicaciones proporcionadas por la práctica de entrenamiento y a la vez tiene importancia estratégica para la implantación de una metodología de entrenamiento correcta.

Hasta ahora los mejores atletas de las disciplinas de duración breve en ciclismo, natación o carrera, se construían normalmente dando preferencia al metabolismo aeróbico. Por lo menos un 60% de la carga de entrenamiento servía para el desarrollo de las bases aeróbicas de la prestación y por lo tanto también para la producción de energía por vía aeróbica. La valoración exclusivamente energética del rendimiento muscular aeróbico y anaeróbico es una simplificación ordinaria y se adapta de manera limitada a explicar la disminución de rendimiento o un cansancio muscular temporal. En
efecto, se ve que, durante los esfuerzos musculares repetidos y exhausivos, la disminución de la recaptación de calcio (Ca\(^{2+}\)) en el retículo sarcoplasmático de la célula y/o el aumento de la proteína que liga el Ca\(^{2+}\) tienen un mayor influjo sobre el cansancio muscular en relación a la reposición inmediata de substratos.

Ya en una contracción muscular tetánica que dure un segundo se consume el 37% de toda la energía disponible por medio del ATP (Bergström, Hultman 1988).

En la práctica, el porcentaje anaeróbico del metabolismo energético en las cargas de Rbd, se puede estimar sobre la base del lactato producido sucesivamente por las cargas de competición. En sujetos muy entrenados, se alcanza una media de 18 a 22 mMol/l de lactato. La concentración máxima de lactato, de 24 a 25 mMol/l, se ha medido después de competiciones de carrera de 400 y 800 m (Mader y colab. 1979).

El lactato acumulado en la musculatura utilizada no puede pasar inmediatamente a las vías hemáticas. El equilibrio de concentración entre lactato celular y la circulación sanguínea se realiza en algunos minutos. Por esto las medidas para conocer el máximo de lactato alcanzado se deben hacer solamente de 10 a 15 minutos después del final del ejercicio.

Las prestaciones de resistencia de duración breve se ejecutan en condiciones de fuerte activación central adrenérgica. El mecanismo de regulación del estrés que se pone así en movimiento tiene como consecuencia que haya una superoferta de substratos energéticos utilizables. Por lo cual, independientemente de cuánto sería necesario, aumentan las concentraciones de glucosa, de ácidos grasos libres, de glicerol, de aminoácidos y de otros substratos.

Las sustancias energéticas liberadas por medio de la lipólisis, la proteólisis y la glucólisis se vuelven a utilizar en el metabolismo durante el período de recuperación.

Regulación cardiocirculatoria y consumo de oxígeno

En su función fundamental para el suministro de oxígeno a la musculatura que se utiliza, el sistema cardiocirculatorio está sostenido por mecanismos centrales de activación. Las catecolaminas (adrenalina y noradrenalina) y el sistema nervioso simpático, ga-
rantizan su plena eficacia en las prestaciones de este tipo. Se alcanzan así los vértices de las posibilidades funcionales del sistema, y la frecuencia cardíaca sube a valores individuales elevados, de 190 a 210 pulsaciones/minuto (ver cuadro 1).

El consumo máximo de oxígeno (VO$_{2\text{max}}$) puede ser solicitado al 100% sólo después de una latencia de 60 s. El consumo de O$_2$ del comienzo de la carga crece linealmente y esta solicitado al 50% ya después de unos 30 s (Sersesse y colab. 1988). En esto no se alcanza nunca un estado de equilibrio (steady state). Para poder utilizar el metabolismo aeróbico en los esfuerzos breves e intensos, los atletas realizan un largo calentamiento preliminar.

El entrenamiento en los deportes y disciplinas deportivas de resistencia de duración breve, tiene principalmente carácter intensivo y prevé pocas unidades de entrenamiento de resistencia. Este es el motivo por el cual las bases de la prestación aeróbica de los atletas que practican estos deportes son menores con respecto a las de los atletas de disciplinas de resistencia de duración larga (ver cuadros 2 y 4).

Presuposiciones de la prestación a nivel celular

<table>
<thead>
<tr>
<th>Disciplina</th>
<th>n</th>
<th>Datos antropométricos</th>
<th>VO$_{2\text{max}}$</th>
<th>Prestación de impulso s por 500m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Peso (kg)</td>
<td>Altura (cm)</td>
<td>ml/min. kg</td>
</tr>
<tr>
<td>Velocistas</td>
<td>5</td>
<td>88</td>
<td>182</td>
<td>640</td>
</tr>
<tr>
<td>1000 m</td>
<td>6</td>
<td>76</td>
<td>176</td>
<td>660</td>
</tr>
<tr>
<td>Persecución 400 m</td>
<td>9</td>
<td>75</td>
<td>182</td>
<td>760</td>
</tr>
<tr>
<td>Por carretera</td>
<td>20</td>
<td>72</td>
<td>179</td>
<td>780</td>
</tr>
</tbody>
</table>

Cuadro 2.- Datos antropométricos y adaptaciones de los sistemas funcionales de los ciclistas alemanes más fuertes (ex RDA), especializados en distancias diversas.

<table>
<thead>
<tr>
<th>Disciplina</th>
<th>VO$_{2\text{max}}$</th>
<th>STF</th>
<th>FTF</th>
<th>Superficie (micrómetros2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ml/min. kg</td>
<td>%</td>
<td>%</td>
<td>STF</td>
</tr>
<tr>
<td>Velocistas</td>
<td>640</td>
<td>65</td>
<td>35</td>
<td>9000</td>
</tr>
<tr>
<td>1000 m</td>
<td>660</td>
<td>72</td>
<td>28</td>
<td>8500</td>
</tr>
<tr>
<td>Persecución 4000 m</td>
<td>760</td>
<td>78</td>
<td>22</td>
<td>8000</td>
</tr>
<tr>
<td>Por carretera</td>
<td>780</td>
<td>80</td>
<td>20</td>
<td>7000</td>
</tr>
</tbody>
</table>

Cuadro 3.- Valores medios de los parámetros de las células musculares de los ciclistas alemanes más fuertes (ex-RDA) (Informe de datos sobre las fibras, prof. Pieper, DHK).
Cuadro 4.- Actividades enzimáticas en el músculo vastolateral de los ciclistas más fuertes en carretera y en pista de las ex-RDA. (Las biopsias se hicieron en el Instituto de investigación para la cultura física y el deporte por el Dr. F. Scharnachmidt, mientras que las actividades enzimáticas fueron determinadas por el Dr. D. Appel).

<table>
<thead>
<tr>
<th>Actividad enzimática</th>
<th>Pista</th>
<th>Carretera</th>
<th>Diferencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>(micromilimols⁻¹.kg)</td>
<td>n = 12</td>
<td>n = 19</td>
<td>p <</td>
</tr>
<tr>
<td>Glucogenosintetasa</td>
<td>68 ± 35</td>
<td>127 ± 23</td>
<td>0,002</td>
</tr>
<tr>
<td>Fosfofructokinasa</td>
<td>4270 ± -1000</td>
<td>2900 ± 800</td>
<td>0,001</td>
</tr>
<tr>
<td>Piruvatoquinasa</td>
<td>2880 ± - 800</td>
<td>1720 ± -360</td>
<td>0,001</td>
</tr>
<tr>
<td>Lactato dehidrogenasa</td>
<td>6500 ± -190</td>
<td>3820 ± -120</td>
<td>0,001</td>
</tr>
<tr>
<td>Citratosintetasa</td>
<td>490 ± -169</td>
<td>720 ± -189</td>
<td>0,005</td>
</tr>
</tbody>
</table>

Cuadro 5.- Subdivisión de las fibras de contracción rápida (FTF) y est (STF) en atletas de categoría nacional A y B en los deportes de resistencia de duración breve y media en la ex-RDA (de 1975 a 1977) (An.Vr. 1977).

<table>
<thead>
<tr>
<th>Deporte</th>
<th>Número</th>
<th>%FTF</th>
<th>%STF</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 m (carrera)</td>
<td>8</td>
<td>45</td>
<td>55</td>
</tr>
<tr>
<td>Patinaje sobre hielo</td>
<td>30</td>
<td>448</td>
<td>552</td>
</tr>
<tr>
<td>Ciclismo sobre pista</td>
<td>9</td>
<td>31</td>
<td>69</td>
</tr>
<tr>
<td>800 y 1500 m (carrera)</td>
<td>21</td>
<td>29</td>
<td>71</td>
</tr>
<tr>
<td>Natación</td>
<td>41</td>
<td>232</td>
<td>768</td>
</tr>
</tbody>
</table>

La elevada activación del sistema nervioso central, necesaria para las prestaciones de breve duración actúa de modo que los sistemas que sostienen la prestación incrementan rápidamente su función. Desde el punto de vista neuromuscular, se reclutan sobre todo todas las fibras de contracción rápida (FTF). El predominio de este tipo de fibras en las prestaciones rápidas y de duración breve, está confirmado por el hecho de que prevalecen porcentualmente en los mejores atletas (ver cuadros 3 y 5).

Sin embargo, se ha observado que también tiene mucha importancia la relación fuerza-tiempo en el movimiento específico de arranque.

Por esto se observa que la media de los atletas de los diversos deportes de duración breve tienen también estructuras de fibra muy diversas (ver cuadro 5).

Claramente la actitud hacia un deporte está determinada esencialmente por la duración breve del impulso específico necesario para el movimiento de avance y frecuencia de movimientos. En efecto, si es cierto que los patinadores de velocidad y los cuatrocientistas de atletismo muestran altos porcentajes de FTF (45%), en los nadadores apenas es posible encontrar un 23% de este tipo de fi-
bras, por consiguiente, son presuposiciones musculares netamente divergentes. Si el deporte de resistencia de duración breve requiere una frecuencia de movimientos elevada, un rápido aumento del parámetro fuerza-tiempo en la arrancada y una oposición relativamente escasa al movimiento de avance, los atletas con un porcentaje alto en FTF estarán claramente en ventaja.

Independientemente del porcentaje de fibras que, como se sabe, está condicionado genéticamente, hay que tener en cuenta que, gracias al entrenamiento específico, las cualidades metabólicas de las fibras se pueden adaptar en dirección aeróbica o anaeróbica. Un perfeccionamiento adecuado de la técnica de los movimientos permite después cambiar el programa motor a nivel neuromuscular, creando nuevas relaciones coordinativas.

Tanto un entrenamiento de resistencia a la fuerza como un entrenamiento de velocidad permiten después aumentar el volumen de las FTF o de las STF (ver cuadro 3). La hipertrofia de las fibras musculares es una presuposición estructural necesaria para aumentar la eficacia de los movimientos de impulso en cada ciclo de movimiento.

3. Resistencia de duración media (Rmd)

Escala temporal

En la resistencia de duración media se han incluido las cargas de duración superior a los 2 minutos e inferiores a los 10'. Por lo tanto, comprenden los 400 y 800 m de las disciplinas de natación, los 1.500 y 3.000 m de carrera, los 4.000 m de persecución individual o por equipos en ciclismo, las disciplinas de los 1.000 m del piragüismo y canoa femeninos, las disciplinas de los 2.000 m en piragüismo masculino, los 3.000 m del patinaje de velocidad sobre hielo femenino y los 5.000 del masculino, etc.

Presuposiciones energéticas de la prestación y regulación del metabolismo

Las prestaciones de Rmd están garantizadas principalmente por reservas energéticas locales, tal como el fosfato de creatina y el glucógeno. Se puede utilizar además la glucosa liberada de los depósitos de glucógeno del hígado, en cuanto que la duración de la carga permita un suministro de glucosa desde la sangre a la musculatura utilizada. Se postulaba al principio en el sector de la Rmd un cambio súbito del metabolismo en las cargas superiores a los 5
min (es decir, que los dos metabolitos estaban solicitados en igual porcentaje). Estudios recientes demostraron que este cambio repentino ya es posible después de una carga de 1 min de duración (sobre esto ya expresamos nuestro parecer en la resistencia de duración breve).

Seguramente la creciente intensidad de la carga, el calentamiento intensivo previo a la competición y la capacidad de prestación aeróbica más elevada, han favorecido este fenómeno. Después de cinco minutos de carga, la participación de la producción de energía por vía aeróbica para garantizar la prestación es ya del 80%. En piragüismo hay disponibles numerosos estudios sobre porcentajes de gasto energético. Según Hagerman y colab. (1978) en 7 minutos está empeñado al menos un 70% del metabolismo aeróbico. Roth y colab. (1983), han profundizado posteriormente en este gasto energético a los 7 min de boga, determinando que el porcentaje anaeróbico es, más precisamente, un 20% alactático y un 10% lactácido.

En la valoración bioenergética de las prestaciones de Rmd, la determinación de la concentración de lactato es importante desde muchos puntos de vista. Por un lado, ésta refleja la medida de la intervención de las vías anaeróbicas (lactácidas) durante la carga, y por otro, en lo que se refiere al rendimiento deportivo, proporciona informaciones sobre el nivel de prestación aeróbica. Como han demostrado numerosas investigaciones sobre modelos de Mader (1988), si se mejora la capacidad de prestación aeróbica, se acumula mucho menos lactato durante la carga.

No obstante, una característica de todas las prestaciones intensivas en el sector de la Rmd es que, incluso con una elevada capacidad de prestación aeróbica, se utilizan a nivel óptimo o máximo todas las vías de producción de energía, tanto lactácidas como alactácidas.

Lo que regula el grado de utilización del metabolismo glucolítico es el lactato producido y la alta acidosís hemática que esto provoca. La concentración de lactato a nivel intramuscular no debe superar los 30 mMol/g aproximadamente, ya que produce una caída del valor del pH a cerca de 6.3, inhibe la fosfofructokinasa (PFK), interrumpiendo la regeneración del ATP y causando una disminución brusca de la prestación. Por consiguiente, las prestaciones de Rmd, se realizarán siempre al límite de la máxima producción de energía en la unidad de tiempo por un lado y por el otro con el máximo impulso propulsivo posible (prestación deportiva específica).
En las prestaciones de Rmd el gasto medio de energía va de 120 a 180 kJ/min. Si se utilizaran las dos vías metabólicas (aeróbica y anaeróbica) en las cargas de duración de unos 2 min, sería posible obtener 200 kJ/min de energía.

En piragüismo, estudios precisos hechos sobre modelos, suponiendo un grado de eficacia del 20% y un consumo de oxígeno de 5 l/min demostraron, en los mejores atletas, una producción de energía de 1625 + 115 kJ/min. Este alto gasto de energía se puede mantener durante 6 minutos (Roth y colab. 1983).

En las prestaciones de Rmd, la concentración de lactato crece hasta los 20 mMol/l y en casos particulares son posibles concentraciones de hasta 24 mMol/l. Es necesario un nivel elevado de metabolismo alactácid o y glucolítico para la aceleración de partida, para las escapadas o aceleraciones durante la competición y para los impulsos finales. Pero las vías metabólicas más importantes en las prestaciones de Rmd con un porcentaje del 90% sobre el total de energía necesaria, son las aláctidas y aeróbicas.

Regulación cardiocirculatoria y consumo de oxígeno

Como muestra el cuadro 1, el sistema cardiocirculatorio está solicitado al máximo de sus posibilidades funcionales. En lo que se refiere al consumo máximo de O2, en los deportes de Rmd, son aquellos en los que puede utilizarse al 100% cerca de 6 min para garantizar la prestación. Desde el punto de vista de las metodologías de entrenamiento, se ve que las cargas de entrenamiento o de competición que se incluyen en este sector pueden utilizarse para aumentar el consumo máximo de oxígeno en todos los deportes de resistencia.

Si se relaciona la cantidad de oxígeno consumida a la masa corporal, no se obtiene ninguna información digna de importancia sobre la cantidad de oxígeno realmente disponible para la musculatura utilizada. Si por el contrario se calcula, en kg o en % con respecto a la masa corporal, sea cual sea la masa muscular utilizada en el deporte considerado, se puede calcular la cantidad de oxígeno disponible para ella. En piragüismo, este consumo de oxígeno neto está señalado en 126-164 ml/min/kg (Mader y colab. 1988).

La determinación específica del VO2max en los deportes de Rmd es un punto de partida importante para la valoración de la capacidad de prestación aeróbica (naturalmente junto con los otros métodos...
de determinación del umbral del metabolismo aeróbico-anaeróbico existente).

Presuposiciones de las prestaciones a nivel de la célula muscular

Las prestaciones de Rmd requieren una activación elevada a nivel del SNC, que permiten también la actuación de los diversos programas motores, que se deben usar, pero también variar durante la competición, sobre todo por razones tácticas (aceleración en salida o durante la competición, variaciones de ritmo, impulsos finales, etc.). La probabilidad de disponer de una mayor capacidad de variar y transformar estos programas motores depende del porcentaje de fibras musculares de contracción rápida.

<table>
<thead>
<tr>
<th>Rendimiento metabólico de las FTF (%)</th>
<th>Octubre</th>
<th>Marzo</th>
</tr>
</thead>
<tbody>
<tr>
<td>glucolítico</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>oxidativo</td>
<td>15</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sección de fibras musculares (micrómetros²)</th>
<th>OCT</th>
<th>MAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>STF</td>
<td>5.888</td>
<td>5.312</td>
</tr>
<tr>
<td>FTF</td>
<td>5.856</td>
<td>6.080</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actividad enzimática (micromoles/s . kgFG)</th>
<th>OCT</th>
<th>MAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citratosintetasa (oxidativo)</td>
<td>700</td>
<td>430</td>
</tr>
<tr>
<td>Fosfogliceratocinasa (glucolítico)</td>
<td>2500</td>
<td>3650</td>
</tr>
<tr>
<td>VO₂max (ml/kg . min)</td>
<td>71.0</td>
<td>67.0</td>
</tr>
</tbody>
</table>

Cuadro 6.- Efectos de un entrenamiento sobre una distancia inferior a la de competición sobre las presuposiciones celulares de la prestación y sobre el consumo de oxígeno de un corredor de 1500 m.

Los atletas más fuertes de los deportes de Rmd tienen de 60 a 75% de fibras de contracción lenta (STF) y de 25 a 40% de fibras de contracción rápida (FTF). Es obvio que los presupuestos necesarios para poder obtener una capacidad aeróbica elevada, es un predominio de fibras STF que trabajan aeróbicamente y se contraen lentamente. Pero entre los deportes y disciplinas de Rmd hay una diferencia en la componente «fuerzas que se oponen al movimiento de avance», que influye en la hiperтроfia de las fibras musculares. Como se ve en el cuadro 3, tanto las fibras ST como las FT en los atletas de los deportes de Rmd tienen superficies de secciones mayores que las de los atletas de los deportes Rld. El aumento de volumen de las fibras musculares conlleva simultáneamente, una dilatación del espacio necesario para las reacciones, tanto del metabolismo oxidativo como del glucolítico. El contenido del entrenamiento es decisivo para el cambio de los presupuestos de prestación a nivel celular. El cuadro 6 muestra como, en un mediofondista, una drástica intensificación del entrenamien-
to lleva a un aumento de los presupuestos del rendimiento anaeróbico y a una disminución de las del rendimiento aeróbico.
PROMOCION DEPORTIVA A NIVEL DE CLUB

Autor: Piñeiro Oliveira, Ramiro
Promoción deportiva a nivel de club

Autor: Piñeiro Oliveira, Ramiro

INTRODUCCION

La reflexión acerca del concepto de "Promoción" que se propone está vinculada a una determinada filosofía de Club, que coincide en parte con la que tiene la Federación de Piragüismo y traslada-ble a muchos Clubs encuadrados en la misma.

Esta intencionalidad de Club podría resumirse en:

• Un Club de Competición

Pero cuidado, atendiendo a los medios y no sólo al resultado como justificación.

A nivel deportivo las pautas por las que se regirá el Club han de conseguir:

• Elevar el número de participantes de edad comprendida entre los 10 y los 14 años, creando en ellos las bases psicofísicas necesarias para poder llegar a ser en el futuro, un deportista de élite.

• Mejorar de forma racional el nivel de los palistas que conforman las categorías de Cadete, Junior y Senior. Para ello se intentará facilitar al palista con verdadero interés de los medios materiales y humanos necesarios.

Esto no quiere decir que se le dé la espalda al piragüista que quie-ra practicar este deporte desde otro punto de vista, pero sí que lo ha de hacer con medios inferiores y con una serie de desventajas con respecto a los deportistas del equipo de competición.

La filosofía o Fines que persigue el Club deben tenerlos en mente todos los componentes del mismo, a modo de que luego "No haya
"engaños". No cabe duda que durante la Temporada se van a producir diversas controversias que podrán ser fácilmente solventadas si la mayoría de la comunidad tiene asumidas las "Normas de Convivencia".

A principio de temporada debemos crear los cimientos de como va a ser la DINAMICA DEL GRUPO, y para ello no hay nada mejor que el consenso. Se hace necesaria una reunión en la que se debatan los distintos temas:

Buscamos una mejora sobre los años precedentes:

- Análisis sobre la temporada pasada:
 + Nivel deportivo.
 + Actividades complementarias (Subvenciones, material, alojamiento en competiciones...)

Tratamos de ver los objetivos que se consiguieron, los que no y lo más importante ¿Cómo lo hicimos?, ¿Valió la pena?

Es decir nos preguntamos por el proceso (convivencia, compañerismo, espíritu de Club...), quizá lo más importante, haya o no haya resultados.

- Predicción de la presente:
 + Componentes de la Junta Directiva, Entrenadores, Palistas...
 + Metas y planificación para la nueva temporada.
 + Otros; actividades de mantenimiento (material, instalaciones), Asignación de material...

Es decir tratamos de actualizar la Concepción del Club, sus fines y lo necesario a realizar para conseguirlo.
CONCEPTO DE PROMOCION DEPORTIVA

En el se contemplan dos puntos de vista recíprocos. El primero que toma como partida la creación de una gran base de deportistas (Alevines e Infantiles) a través de la cual se ha de formar un buen Equipo en las categorías superiores, procurando conseguir buenos resultados en los distintos campeonatos.

Y un segundo plano que trata de llevar a los palistas más destacados a los centros de tecnificación o al equipo nacional.

Decimos que hay un concepto recíproco, porque estos dos puntos de vista se trabajan a la vez, vemos una gran relación entre la base de palistas con los que comenzamos el trabajo y la oportunidad de que se consiga introducir a alguno en la selección nacional; como también el que al tener seleccionados va a repercutir lógicamente en la buena actuación que realice el Club en distintas regatas.
De esta forma la promoción se extiende a los largo de todas las categorías. Pasando de la globalidad (nº de palistas) a la individualidad (rendimiento).

Vamos a tratar de que tanto el número de deportistas como el rendimiento de los mismos sea el óptimo, para ello tenemos básicamente dos formas:

- Conseguir cada vez una mayor base de deportistas, por lo que en categorías superiores se supone que habrá más.
- Intentar que no disminuya demasiado el número de deportistas que tenemos preconcebido como base.

Como Club me voy a inclinar por la segunda pues tengo unas limitaciones, tanto materiales como humanas (nº técnicos, piraguas...). Aquí es donde verdaderamente radica el trabajo de la promoción, la capacidad de un Club para mantener su deportistas consiguiendo a la vez un mayor rendimiento en cada uno.

En todo ello va a tener gran repercusión una serie de factores positivos o negativos que influirán en la eficacia o ineficacia de la promoción.

Estos factores no sólo están conducidos por los entrenadores, como todos sabemos un Club, además lo forma la directiva, deportistas, socios..., cuya actuación esta limitada en cierta medida por los organismos oficiales, empresas colaboradoras, Federación,...
¿COMO CONSEGUIMOS LA BASE DE DEPORTISTAS?

De tantas soluciones como se dispone en la animación y organización del deporte, "Las Escuelas deportivas" son una forma, a nuestro entender, de las más lógicas para resolver problemas como la iniciación, promoción deportiva, descubrimiento de valores...

Con una actuación en conjunto por parte de los técnicos del Club, buscamos el que exista:

*Placer de movimiento, cuyo objetivo puede ser el gusto por la práctica deportiva, en este caso el piragüismo.

*Utilizar el "Juego" como forma desprovista de excesivas reglas, utilizando la competición como elemento sustancial del deporte, como vía de desarrollo y no de marginación.

La tipología de la Escuela se basa en una organización por grados o etapas que ha de abrir las puertas a la persona en todo su proceso evolutivo, cuidando el no dejar lagunas tanto a nivel motriz, psicológico, etc. Estos niveles se basan en la progresión y continuidad intentando esta en un principio llevar al niño a un estado en el que prima, una gran capacidad psicomotriz, aprendiendo los fundamentos básicos del deporte, pudiendo al final entrar en las categorías superiores con garantías de éxito.

Nosotros la escuela deportiva la enmarcamos para edades que van desde los 9 a los 14 años correspondientes a las categorías de Alcines e Infantiles.

Los niños acceden a ella a través de Cursillos de Iniciación que se realizan en fechas clave, donde pueda haber una mayor asistencia por parte de los niños de los colegios de la localidad.

La propaganda se realiza en los mismos centros escolares tanto cuando está finalizando el curso, principios de junio, como cuando empieza, mediados de septiembre.

Para nuestra entidad, la escuela tiene una duración prácticamente anual, pero a la hora de venderla a los organismos oficiales la relacionamos con el período escolar, pasando a formar parte de las
otras escuelas deportivas del Ayuntamiento, con las consiguientes subvenciones dispuestas para ello (material, monitores...).

Creemos que este es un aspecto importante y no podemos seguir actuando de forma aislada separándonos del resto del entramado deportivo.

Es más, a parte de los Cursillos de iniciación comentados anteriormente para la captación de participantes en la Escuela debemos ir más lejos y proponer a las APAS de los centros escolares la realización de actividades extraescolares, cursos monográficos basados en el piragüismo, que por necesidades climatológicas se podrían encuadrar al comienzo de la primavera. Y avanzando más, contando ya a nivel provincial y/o autonómico, en colaboración con más clubs y la federación se debería estudiar el Tema de "Deporte escolar" e introducir nuestra especialidad, consiguiendo hacerlo cada día más popular.

Para ello sería necesario un estudio entre todas las entidades implicadas a fin hacer las reestructuraciones pertinentes para que fuese viable.
COMO LA MANTENEMOS

Las estadísticas nos muestran la dura realidad, en el deporte federado sus practicantes lo abandonan masivamente al llegar a los 14-15 años. Esto nosotros también lo vivimos, el paso de la categoría infantil a la cadete supone muchas veces un "trauma" para el club, pues el abandono de los palistas dejan atrás el trabajo e ilusión que se había puesto en ellos.

Por ello debemos prestar gran importancia a la:

MOTIVACION

Se puede clasificar en dos tipos: La interna o tendencia propia del individuo para acometer una actividad y la externa o causa por la que se hace algo buscando una recompensa que viene del exterior.

La motivación interna la relacionamos con el afán de superación, nosotros decimos que una persona posee un alto índice de este tipo de motivación cuando cumple una serie de características:

- Se fija objetivos elevados pero alcanzables.
- Prepara planes o programas para su consecución.
- Evalúa objetivamente sus progresos y asume el resultado.
- Piensa positivamente.
- Tiene muy en cuenta factores personales tales como la capacidad de trabajo, nivel de esfuerzo.

Nosotros tenemos que ayudar al deportista a conseguirlo. Siendo necesario el participar con el, enseñándole a plantear los objetivos y como programar para conseguirlos.

También podemos complementar el trabajo usando motivadores externos, que poseen su importancia y que sin duda ayudan a aumentar la motivación del atleta.

Y no prometiendo el "Oro y el Moro" hay que ser realistas y lo más importante es la labor del entrenador:

- Como presenta sus trabajos.
- Aclarando al palista el objetivo a alcanzar, planeando logros y objetivos intermedios. (Anexo-3)
Aplicar reforzadores positivos premiando las conductas deseadas, adecuando estos a las necesidades del entrenamiento. (verbales, materiales...)

Organización del entrenamiento; se deben plantear las sesiones de forma atractiva e interesantes para el palista. Hay que convencerlo de por qué lo hacemos así.

Utilizar variedad, es decir un amplio repertorio de Ejercicios / Tareas jugadas / Juegos.

Etc...

Si hasta un científico de la innegable talla de Albert Einstein (1952) señalaba "La enseñanza debe ser tal que pueda recibirse como el mejor regalo y no como una amarga obligación".

Lo lógico es que aquellos que nos dedicamos a ello, y aquí sin duda entra también nuestra labor como entrenadores de Club, busquemos los recursos adecuados para conseguirlo.
SINGULARIDAD DEL ENTRENAMIENTO (Anexo-4)

Este esquema nos muestra que al entrenador le llegan distintas informaciones. Unas por medio de la lectura, cursos, coloquios, conferencias... que nos traen noticias de los adelantos de las diversas ciencias de apoyo (fisiología, pedagogía, biomecánica, aprendizaje y desarrollo motor...) y experiencias de otros entrenadores.

Que conjuntamente con sus propias experiencias adquiridas en el proceso de entrenamiento y competiciones, viviéndolas con el atleta, le dan paso a perfeccionar el entrenamiento.

El técnico de Club debe ser operativo y no caer en divagaciones, es decir tengo que ser realista y saber extraer unas conclusiones que se puedan aplicar a mi mundo en concreto, es decir, adaptarlas a mis deportistas y las circunstancias que los rodean. En ello es donde verdaderamente radica el camino del acierto en nuestro trabajo.

PLANIFICACION DEL ENTRENAMIENTO

La planificación del entrenamiento que se deriva de la concepción de club ya planteada, que busca la "Promoción deportiva", ha de ser realizada con planes a largo Plazo a modo de racionalizar mejor el trabajo en la vida del palista.
Ha de cumplir los principios del entrenamiento deportivo y buscar la secuencia más acorde y racional para la realización de las actividades.

El Club debe asumir desde el principio la finalidad de la planificación del entrenamiento que plantean los entrenadores.

En el Firrete-Autopistas quedaría resumida de la siguiente forma:

Los sistemas de entrenamiento planteados por el equipo técnico-deportivo, parten de la premisa de respetar el desarrollo del deportista. En ningún momento se acelerará de forma indiscriminada el ritmo de preparación deportiva del palista. Intentando así, y sobre todo en las categorías más jóvenes, el crear las bases psicofísicas necesarias para rendir plenamente en años sucesivos.

El entrenamiento programado para las categorías Cadete, Junior, Senior, irá encaminado a alcanzar las máximas cotas de forma deportiva, en los campeonatos de España de Fondo y en los de Pista, siendo mayor en el segundo.

Si es aconsejable, dependiendo del momento y características del deportista, se preparará de forma particular, controles nacionales, y otras regatas importantes, que estén señaladas como filtros para los campeonatos de España o para poder acceder a ser miembro del equipo nacional o autonómico.

En lo concerniente a las categorías más noveles, alevines e infantiles, el fin propuesto es el de invitarlos a conocer y disfrutar del deporte, creando los fundamentos básicos para un rendimiento posterior. La práctica deportiva estará marcada por un gran componente de preparación general y lúdico.

En todas las categorías de palistas, el entrenamiento aparte de buscar una mejora en la preparación física, técnica y táctica, pretende conseguir también, otros objetivos del entrenamiento deportivo como son:

- Desarrollo de las cualidades volitivas, tales como la autoestima, perseverancia, capacidad de sobreponerse a dificultades, voluntad, valor, controlar las emociones...
• Asegurar y consolidar la preparación óptima en el equipo, es decir que imperen las relaciones sanas, amistad...
• Fortalecer el estado de salud de cada deportista.
• Prevenir lesiones tomando todas las precauciones posibles de seguridad.
• Enriquecer el conocimiento teórico de cada deportista.

Se resumen en tres grandes objetivos:

Divertirse, desarrollarse, e intentar ganar

Indudablemente la prioridad de estos objetivos las marca el entrenador, en cuanto a su "Forma de hacer".

Al disponernos a planificar tomamos **PUNTOS DE REFERENCIA**:

- **Los Palistas**: su edad biológica, condiciones innatas, años de entrenamiento y su nivel de preparación...

- **Objetivo de capacitación** que ha de ir consiguiendo (test standards que deben pasarse cada año), relacionándolos con los principios del entrenamiento.

 - Aumento de la carga de entrenamiento. Volumen, intensidad, recuperación, tipo duración frecuencia de sesiones, ejercicios generales a tareas con mayor transferencia, tipo nº de competiciones...

 - El momento de aplicar los distintos tipos de entrenamientos.

Por lo que extraemos unas, **FASES DE PREPARACION DE NUESTROS PALISTAS**

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Edad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Fase</td>
<td></td>
</tr>
<tr>
<td>A) Preparación Gral</td>
<td>Alevín</td>
</tr>
<tr>
<td>B) Introd. Especialización</td>
<td>Infantil</td>
</tr>
<tr>
<td>2-Fase</td>
<td></td>
</tr>
<tr>
<td>Preparación de la búsqueda de máximos rendimientos y su mantenimiento</td>
<td>Cadete</td>
</tr>
<tr>
<td></td>
<td>Junior</td>
</tr>
<tr>
<td></td>
<td>Senior</td>
</tr>
</tbody>
</table>

A modo de resumen los **CONTENIDOS DEL ENTRENAMIENTO** estarán caracterizados:
1ªFASE:

- Detectar el estado de salud, prevenir y corregir defectos físicos.

- Gran variedad en el entrenamiento, en la etapa de preparación general se practican numerosos juegos simples y deportivos a fin de conseguir un gran enriquecimiento motriz (coordinación-técnica general), cimiento necesario para una técnica específica futura. En la etapa de introducción a la especialización, esta técnica se centra cada vez más en nuestro deporte y en una modalidad en concreto. A partir de la idea de movimiento palista-pala/piragua-agua se trabajan las distintas fases del paleo, técnica de salidas, de ciaboga de paleo rítmico y constante (administración del esfuerzo-táctica)... Todo ello a través de la creación de la imagen de paleo en el deportista y utilizando métodos sobre todo globales, con polarización en una subtarea.

- El desarrollo de las cualidades físicas básicas busca el trabajar las diferentes expresiones de cada una de ellas, más apropiada para estas edades, utilizando gran variedad de ejercicios, formas jugadas, juegos y otros deportes.

- Resistencia: Sobre todo en su componente aeróbico, educando al niño hacia un entrenamiento de larga duración (Ritmo continuo, fartlek, interval larga duración...)

- Fuerza: de tipo resistencia, velocidad; enfocando su trabajo grandes grupos musculares, por medio de ejercicios generales, de autocarga, por parejas, pequeñas sobrecargas con aparatos simples (balones medicinales, mancuernas), comenzando a los 13-14 años el trabajo de las técnicas con barras de pesas para los ejercicios más especiales de este deporte.

- Velocidad: de reacción a los diferentes estímulos, de acción distancias cortas (relevos), orientado a la coordinación-ritmo-frecuencia.

- Flexibilidad: Trabajo para mejorar y no perder el buen grado de amplitud que tienen las articulaciones a estas edades, como forma de prevenir lesiones y facilitar los procesos de recuperación.

- Mejora de las cualidades volitivas como la voluntad, perseverancia para conseguir sus objetivos...
2ª FASE

El entrenamiento se hace poco a poco cada vez más especializado para desarrollar los fundamentos propios del deporte. Sin olvidar el juego y la variedad, las tareas enfocadas a aumentar el potencial funcional del organismo cada vez utilizan más los ejercicios propios de los distintos métodos de entrenamiento. El entrenamiento progresa cada vez más en:

- Control biológico más complejo del piragüista.

- Perfeccionamiento de la técnica, adecuandola a las nuevas capacidades psicofísicas.

- Desarrollo de la táctica, entrenamientos de ritmo para las distintas distancias.

- Cualidades físicas: Distinguirlas que se pueden desarrollar en el agua y las que se tienen que complementar con un trabajo fuerte en tierra (Fuerza). Se busca un trabajo de mayor calidad, Umbral anaeróbico, Consumo máximo de oxígeno, potencia aeróbica, capacidad y potencia anaeróbica, fuerza máxima...

- Psicológicamente a de ir asumiendo cada vez más lo necesario para cubrir sus metas, adecuándolas a las características de este deporte, capacidad de sufrimiento, sobreponerse a dificultades...

- Complementar las experiencia practica con mayores aspectos teóricos.

PROGRAMACION DE LA TEMPORADA

A la hora de programar los entrenamientos para la temporada, buscamos un "Esquema básico que facilite mi labor". Divido la temporada en períodos/ciclos de entrenamiento, particulares en el tiempo con objetivos y contenidos bien diferenciados.

Las razones básicas son:

-La imposibilidad de desarrollar al mismo tiempo todas cualidades del palista.
-Aplicar correctamente la alternancia de carga de entrenamiento y recuperación.

Esta construcción metodológica, de sistema jerárquico de ciclos de larga, media y corta duración se sintetiza en la siguiente planilla (Anexo-5).

<table>
<thead>
<tr>
<th>Esquema Básico de Programación Temporada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macrociclo - 1</td>
</tr>
<tr>
<td>Progresivo/P Desarrollo/D</td>
</tr>
<tr>
<td>Mantenimiento/M Pre-Comp./PC</td>
</tr>
<tr>
<td>Competición/C Control/C Regeneración/R</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1-Microciclo</th>
<th>2-Microciclo</th>
<th>3-Microciclo</th>
<th>4-Microciclo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progresivo /P De choque /D Precomp /T</td>
<td></td>
<td>Competitiv. /C Recuperación/R</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frecuencia de las cualidades</th>
<th>3 - Microciclo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunes</td>
<td>Martes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sesión</th>
<th>Objetivos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha . . . Objetivo . . .</td>
<td>Unico Mixto</td>
</tr>
<tr>
<td>Equipo . . . Material . . .</td>
<td>Estructura</td>
</tr>
<tr>
<td>Tareas Tp Información Calentamiento</td>
<td></td>
</tr>
<tr>
<td>Logro-Objetivos V. Calma Conoc. Resultados</td>
<td></td>
</tr>
</tbody>
</table>
CICLO TEMPORADA
- MACROCICLO
- MESOCICLO
- MICROCICLO
- SESION

MACROCICLO: Dimensión relativamente grande, se orienta según las fases de desarrollo de la forma deportiva, crecimiento (periodo preparatorio), estabilidad (competición), pérdida de la forma (P. Transición). En nuestra temporada puede haber uno o dos macrociclos (periodización Simple o doble).

Idea del Macro ciclo INTEGRADO: Que reducen el tiempo del macro ciclo tradicional, buscando ciclos más cortos pero con todas las connotaciones del macro ciclo. Intentan conseguir el soportar mayor carga durante más tiempo, estimulando más al organismo, mayor alternancia de cargas y recuperación.

MESOCICLO: Etapa que garantiza el desarrollo de ciertas aptitudes en particular, evitando el agotamiento. Compuesto habitualmente por 3-4 microciclos.

MICROCICLO: Unidad básica del proceso de entrenamiento, que consta generalmente de 7-10 sesiones. Trata de que haya una buena administración de las cargas.

SESION: Unidad operativa, más pequeña del entrenamiento, busca la manera más efectiva de la aplicación de las cargas.

Estas unidades se repiten (ciclos), con distintos mensajes (contenido del entrenamiento) que dependen de la fases de preparación del palista.
PROGRAMACION DE LA TEMPORADA PARA LA PRIMERA FASE

Para estas categorías elegimos el tipo de periodización simple, debido fundamentalmente a la escasa capacidad de tolerancia de las cargas. No se orienta en función de las competiciones sino para una mejor administración del trabajo a realizar.

Las competiciones se utilizan como test del aprendizaje y no como resultado deportivo, se les intenta sacar su factor educativo (técnica, ritmo-táctica, capacidades físicas en la competición, psicológicas como el soportar la tensión, capacidad de esfuerzo...), siendo necesario el que estas se adapten en número y variedad, siendo este último factor muy importante.

La periodización de los entrenamientos esta en consonancia con el CALENDARIO ESCOLAR (períodos de evaluación-descanso).
PROGRAMACION DE LA TEMPORADA PARA LA SEGUNDA FASE

Para estos deportistas además de la inmensa importancia del CALENDARIO ESCOLAR, se toma cada vez más en consideración a medida que se va pasando a categorías superiores, el cuadro competitivo. Por ello y por otras razones que respetan la capacidad de tolerancia de las cargas, se acoge la periodización doble.

- Distintos objetivos de consecución de forma deportiva. Para los más jóvenes de este grupo de categorías, tiene mayor importancia el campeonato de fondo, a modo de conseguir un volumen óptimo, que se mantiene y se va trabajando cada vez más la velocidad.

- En estas edades se busca un aumento más gradual del volumen e intensidad, mientras que a medida que avanzamos de categoría se trabaja a niveles más elevados de volumen e intensidad, alternando mayores y menores cargas durante todo el año, provocando mayores desadaptaciones en el organismo con el fin de producir mayores índices de mejora, con supercompensaciones continuas.

Se entrena pensando en la globalidad de las variables que condicionan este deporte, estas se entrenan durante todos los períodos de la temporada, pero variando los porcentajes dependiendo del ciclo.
Queremos decir que acentuamos el trabajo de una cualidad en un momento en concreto y luego mantenerla, trabajando sólo en unos porcentajes menores pero adecuados. Con distintos medios, generales, especiales, específicos.

PROGRAMA SEMANAL

-Programación semanal. Que junto con la de la sesión es con la que el deportista esté más en contacto.

<table>
<thead>
<tr>
<th>DÍA</th>
<th>1-ENTRENAMIENTO</th>
<th>2-ENTRENAMIENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martes</td>
<td>- F. Máxima (H.M.) (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Carrera R. Cont. 30' P.M. 140/50</td>
<td></td>
</tr>
<tr>
<td>Miercoles</td>
<td>- Paleo R. Cont/Partl. Grupos-ola 6Km.150/60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Técnica Canoa / C-Comp Kayak, Carrera 6.1 5...1 hasta 1,1</td>
<td></td>
</tr>
<tr>
<td>Jueves</td>
<td>- F. Máxima (H.M.) (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Juego Dtxivo. 30'</td>
<td></td>
</tr>
<tr>
<td>Viernes</td>
<td>- Paleo R. Cont. 10 Km 140/50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Pot. Cint Pelv. 200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Estiram./Relaj.</td>
<td></td>
</tr>
<tr>
<td>Sabado</td>
<td>- F. Máxima (H.M.) (1)</td>
<td>- Paleo "Técnica" + 10Km. R. Cont.</td>
</tr>
<tr>
<td></td>
<td>- Paleo R. Cont./ 5 salidas Dif Est.</td>
<td></td>
</tr>
<tr>
<td>Domingo</td>
<td>- Paleo "Técnica" + 10Km (8 progr. x 20pal).</td>
<td>- Paleo 12Km. 8 x 2’ r-2’ Pm 160...140</td>
</tr>
<tr>
<td></td>
<td>- Fuerza Gral/Gomas Pot. cint. pelv 400 C-Comp.</td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>OBSERVACIONES:</td>
<td>OBSERVACIONES:</td>
</tr>
<tr>
<td></td>
<td>*Press Banca. 4x50%-60%</td>
<td>*Press Banca. 5 x 60%-70%</td>
</tr>
<tr>
<td></td>
<td>*Remo B.H. ...</td>
<td>*Remo B.H...</td>
</tr>
<tr>
<td></td>
<td>*F.Completa. 20-25 rep. x 4</td>
<td>**"Piramida"... 5 x 20-25 rep</td>
</tr>
<tr>
<td></td>
<td>*Abdominales Espal. ... x 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Pajaros (Idem F. Compl.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Ojo:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Máx. n° de rep. al %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Recuperación-2'30"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Pocos Kg en F. Compl. pajaros y Piramide.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Ejecutar bien el Ejerc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Estirar Grupo Muscular que trabajamos antes de ir a realizar el ejercicio</td>
<td></td>
</tr>
</tbody>
</table>
VALORACION DE LA TECNICA
(PROGRAMA 2.000)
VITORIA 1992

Autores: Eduardo de Bergia Cervantes
Jose Luis Sánchez Hernández
VALORACION DE LA TECNICA
(PROGRAMA 2.000)

Vitoria 1992

Autores: Eduardo de Bergia Cervantes y Jose Luis Sánchez Hernández

El análisis técnico se ha realizado a todos los participantes en la Concentración de Infantiles celebrada en Vitoria en Julio de 1992. Se utilizó la hoja de valoración de la técnica de Canoa y de Kayak, usando para la puntuación, los criterios elaborados por la Escuela Nacional de Entrenadores y difundidos a través de los Programas de Cursos Monográficos “Valoración de la técnica de Kayak” celebrados en la gran mayoría de las Autonomías participantes.

El informe realizado de forma individual, así como la copia de la grabación, sobre la que se valoró, se remitió a las Federaciones. Para un mejor análisis y comprensión de los resultados se ha elaborado un perfil medio de cada una de las categorías valoradas. Este perfil se realizó a partir de las puntuaciones más frecuentes de cada uno de los rasgos técnicos sujetos a valoración. Se presenta en un gráfico circular, de tal manera que la técnica perfecta (máxima puntuación) estaría representada por un círculo completo.

CONCLUSIONES TECNICA DE KAYAK

De la comparación de las curvas representativas de cada categoría podemos concluir que:

- Existe una semejanza casi total en la técnica utilizada por la categoría Infantil A, tanto Hombres como Mujeres.

- Existen graves deficiencias técnicas en la Categoría de Infantiles B, tanto Hombres como Mujeres.

El análisis de los diferentes rasgos técnicos valorados, nos permiten sacar las siguientes conclusiones generales:

- La torsión de tronco en la posición inicial está en valores próximos a uno en todas las categorías, lo cual supone una muy baja puntuación.
- No se mantiene la torsión alcanzada en el punto anterior. La categoría con un valor más bajo es la de los infantiles B.

- La entrada de la pala en el agua es aceptable, especialmente en la categoría de Infantil B. Esto entendemos que se debe a la utilización de palas excesivamente largas.

- La acción del codo durante la tracción es muy acusada en las chicas y esto va unido a una muy poca torsión. La acción de flexión de codo, aunque menor, también se presenta en los chicos.

- Se produce chapoteo, cuando la pala entra en el agua, en todas las categorías especialmente y de forma más acusada en la categoría de Damas Infantil B. Este rasgo se presenta unido, en gran número de palistas a la pala sesgada.

- La mano de empuje se desplaza por encima de la cabeza, durante la tracción, y está no acompaña el movimiento de torsión del tronco. Este problema está causado por la utilización de palas grandes que exceden las posibilidades de fuerza de los palistas.

- El comienzo de la salida de la pala del agua se realiza a la altura de la rodilla, especialmente en la categoría de Infantiles B. Esto provoca una reducción de la torsión en el lado contrario.

- El paleo en estas categorías se caracteriza por su falta de ritmo y continuidad especialmente durante la fase de tracción de la pala en el agua. Esta provocado por una falta de aplicación de la fuerza a la pala y la no existencia todavía de una condición específica adecuada.

- La simetría en el paleo es buena en los infantiles A. Esto obedece a una mayor coordinación y control en el paleo que permite compensar su lateralidad. Por el contrario la simetría es muy pobre en los infantiles B.

- El barco se caracteriza, en todas las categorías, por grandes desplazamientos laterales (bandazos).
VALORACION DE LA TECNICA DE KAYAK INFANTIL - A

PUNTUACION DEL PALISTA TIPO 17 = 14 + 3

VALORACION DE LA TECNICA DE KAYAK INFANTIL - B

PUNTUACION DEL PALISTA TIPO 19 = 16 + 3
VALORACION DE LA TECNICA DE KAYAK DAMA INFANTIL - A

Puntuación del palista tipo 19 = 16 + 3

VALORACION DE LA TECNICA DE KAYAK DAMA INFANTIL - B

Puntuación del palista tipo 14 = 14 + 0
CAUSAS

Todos estos problemas están motivados por la utilización de palas no adaptadas, en sus medidas, a las posibilidades de desarrollo de fuerza de los palistas. El uso de palas grandes en tamaño de hoja y longitud total producen además los siguientes problemas:

- Uso de la flexión de codo durante la fase de tracción.
- Que la hoja no entre completamente en el agua durante la fase acuática.
- Que la hoja entre en el agua en posición sesgada.
- Que el brazo de empuje se eleve por encima de la cabeza.
- Que la salida de la hoja sea prematura, limitando la torsión del lado contrario y la amplitud del gesto.
- Balanceo del cuerpo y de la embarcación, para ayudar en la tracción y extracción de la pala.
- Paleo arritmico con paradas y cambios de trayectoria durante la tracción.

Los problemas de simetría, en la categoría de Infantiles B, están producidos por:

- Poco trabajo en el agua
- La manifestación de la lateralidad del individuo.
- El predominio de los palistas diestros hace que se presenten más defectos por el lado izquierdo, por lo que se recomienda que la valoración técnica se realice siempre por el lado derecho.

RECOMENDACIONES

De todo lo anteriormente expuesto hemos concluido las siguientes recomendaciones a la Dirección del Programa 2.000 y a los entrenadores de los palistas participantes.

- Es necesario el uso de palas adecuadas a las características de los niños. Como recomendación se aconseja una pala modelo Rasmussen con una longitud de hoja no mayor de 48-49 cm, una anchura entre 15 y 17 cm y una profundidad de cazo de 2'7 a 3'2 cm. (Estas medidas son orientativas y deben de adaptarse a las características individuales de los palistas).
- La longitud de la pala debe establecerse según el criterio del entrenador. Para comprobar si la pala tiene la longitud correcta debemos observar estas cuatro puntos:
- la pala cogida correctamente y de forma simétrica,
- no se introduce de forma sesgada,
- se saca correctamente
- mantiene una frecuencia de paleo normal, pudiendo aumentar este ritmo en situaciones puntuales.
- la mano del brazo de empuje no se desplaza por encima de la cabeza.

Como orientación la pala no debe ser mayor (salvo casos excepcionales) mayor de 215-217 cm.

- Esta edad por sus características de fuerza, no precisa de palas construidas con materiales muy resistentes y por tanto caros. El aluminio y la fibra de vidrio pueden cumplir la misma función que el carbono.

VALORACION DE LA TECNICA DE CANOA
Lado de paleo: Derecho

Puntuación del Palista Tipo 25
VALORACION DE LA TECNICA DE CANOA
Lado de paleo: Izquierdo

PUNTUACION DEL PALISTA TIPO 25